82 resultados para developing subcontracting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distributions of a carboxyl terminal splice variant of the glutamate transporter GLT-1, referred to as GLT-1B, and the carboxyl terminus of the originally described variant of GLT-1, referred to hereafter as GLT-1alpha, were examined using specific antisera. GLT-1B was present in the retina at very early developmental stages. Labelling was demonstrable at embryonic day 14, and strong labelling was evident by embryonic day 18. Such labelling was initially restricted to populations of cone photoreceptors, the processes of which extended through the entire thickness of the retina and appeared to make contact with the retinal ganglion cells. During postnatal development the GLT-1B-positive photoreceptor processes retracted to form the outer plexiform layer, and around postnatal day 7, GLT-1B-immunoreactive bipolar cells appeared. The pattern of labelling of bipolar cell processes within the inner plexiform layer changed during postnatal development. Two strata of strongly immunoreactive terminals were initially evident in the inner plexiform layer, but by adulthood these two bands were no longer evident and labelling was restricted to the somata and processes (but not synaptic terminals) of the bipolar cells, as well as the somata, processes, and terminals of cone photoreceptors. By contrast, GLT-1alpha appeared late in postnatal development and was restricted mainly to a population of amacrine cells, although transient labelling was also associated with punctate elements in the outer plexiform layer, which may represent photoreceptor terminals, (C) 2002 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several anomalies occur in the developing neural and visceral head skeleton of young specimens of Neoceratodus forsteri that have been reared under laboratory conditions. These include anomalies of the basicranium and its derivatives, aberrations of the anterior mandible and hyoid apparatus, and abnormalities in the articulation of the jaws and the elements that produce them. Apart from the occasional absence of the basihyal, and failure of the quadrate processes to form, the anomalies are not deficiencies. Most involve malformations of parts of the neurocranium and visceral skeleton, inappropriate articulations or fusions between elements, disunity in structures that are normally fused and the appearance of supernumerary elements. The incidence of chondral anomalies, generally higher than aberrations that occur in the dermal skeleton in juvenile lungfish, ranges from 1-10% in laboratory reared individuals that have not been subjected to experimental interference. The anomalies differ from those found in many amphibian populations, in the field and in the laboratory, because they involve the cranium, and not the limbs, and the lungfish have not been exposed to the factors that cause anomalies in the amphibians. It is unlikely that the existence of those anomalies, if it is reflected in the wild population, places a selective pressure on the lungfish, because, in a normal season, less than 1% of the total number of eggs produced survive to be recruited into the adult population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the lungfish dentition is partially understood as far as morphology and light microscopic structure is concerned, the ultrastructure is not. Each tooth plate is associated with a dental lamina that develops from the inner layer of endodermal cells that form the oral epithelium. Dentines, bone and cartilage of the jaws differentiate from mesenchyme cells aggregating beneath the oral endothelium. Enamel, in the developing and in the mature form, has similarities to that of other early vertebrates, but unusual characters appear as development proceeds. Ameloblasts are capable of secreting enamel, and, with mononuclear osteoclasts, of remodelling the bone below the tooth plate. The forms of dentine, all based largely on an extracellular matrix of collagen and mineralised with biological apatite, differ from each other and from the underlying bone in the ultrastructure of associated cells and in the mineralised extracellular matrices produced. Cell processes emerging from the odontoblasts and from the osteoblasts vary in length, degree of branching and of anastomoses between the processes, although all of the cell types have large amounts of rough endoplasmic reticulum. Mineralisation of the extracellular matrices varies among the enamel, dentines and bone in the tooth plate. In addition, the development of the hard tissues of the tooth plates indicates that many of the similarities in fine structure of the dentition in lungfish, to tissues in other fish and amphibia, apparent early in development, disappear as the dentition matures. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel mammalian gene Crim1 encodes a transmembrane bound protein with similarity to the secreted bone morphogenetic protein (BMP) antagonists, vertebrate Chordin, and its Drosophila homologue short gastrulation. Crim1 is expressed in the neural tube in mouse in a restricted pattern, but its function in central nervous system development is largely unknown. We isolated the chicken Crim1 orthologue and analyzed its expression in the developing neural tube. Chicken CRIM1 shares strong homology to human/mouse CRIM1 and C. elegans CRIM1-like proteins. Crim1 is expressed in a similar but not identical pattern to that in the developing spinal cord of mouse, including the notochord, floor plate, motor neurons, and the roof plate. Unlike follistatin, a secreted inhibitor of BMPs, in ovo electroporation of CRIM1, as a full-length transmembrane bound or secreted ectodomain was not sufficient to disrupt early patterning of the neural tube. However, ectodomain CRIM1 overexpression leads to an approximate 50% decrease in populations of specific ventral neuronal populations, including ISL-1(+) motor neurons, CHX-10(+) V1, and EN-1(+) V2 interneurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levels of expression of mRNAs encoding the different Ephs and ephrins were measured by semi-quantitative reverse-transcription polymerase chain reaction in developing mouse whole inner ears, and in dissected fractions of the neonatal mouse inner ear. Nineteen of the 24 known Ephs and ephrins were surveyed. The results showed that between embryonic age (E) 11.5 days and E12.5, levels increased 10-300 times per unit of tissue. In neonatal mice, the fraction containing combined organ of Corti and spiral ganglion showed relatively strong expression of EphA4, EphB3, ephrin-A3, ephrin-B2 and ephrin-B3. In the lateral wall, EphA4, ephrin-A3 and ephrin-B2 were strongly expressed, while ephrin-A3 was particularly strongly expressed in utricular and saccular sensory epithelia. The results suggest that the Ephs and ephrins are likely to play a part in the differentiation of the structures of the inner ear, and show which Ephs and ephrins are most likely to play important roles in the different structures. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the rodent central nervous system (CNS) during the five days prior to birth, both growth hormone (GH) and its receptor (GHR) undergo transient increases in expression to levels considerably higher than those found postnatally. This increase in expression coincides with the period of neuronal programmed cell death (PCD) in the developing CNS. To evaluate the involvement of growth hormone in the process of PCD, we have quantified the number of motoneurons in the spinal cord and brain stem of wild type and littermate GHR-deficient mice at the beginning and end of the neuronal PCD period. We found no change in motoneuron survival in either the brachial or lumbar lateral motor columns of the spinal cord or in the trochlear, trigeminal, facial or hypoglossal nuclei in the brain stem. We also found no significant differences in spinal cord volume, muscle fiber diameter, or body weight of GHR-deficient fetal mice when compared to their littermate controls. Therefore, despite considerable in vitro evidence for GH action on neurons and glia, genetic disruption of GHR signalling has no effect on prenatal motoneuron number in the mouse, under normal physiological conditions. This may be a result of compensation by the signalling of other neurotrophic cytokines.