170 resultados para antennal phenotype


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progressive myoclonus epilepsy (PME) has a number of causes, of which Unverricht-Lundborg disease (ULD) is the most common. ULD has previously been mapped to a locus on chromosome 21 (EPM1). Subsequently, mutations in the cystatin B gene have been found in most cases. In the present work we identified an inbred Arab family with a clinical pattern compatible with ULD, but mutations in the cystatin B gene were absent. We sought to characterize the clinical and molecular features of the disorder. The family was studied by multiple field trips to their town to clarify details of the complex consanguineous relationships and to personally examine the family. DNA was collected for subsequent molecular analyses from 21 individuals. A genome-wide screen was performed using 811 microsatellite markers. Homozygosity mapping was used to identify loci of interest. There were eight affected individuals. Clinical onset was at 7.3 +/- 1.5 years with myoclonic or tonic-clonic seizures. All had myoclonus that progressed in severity over time and seven had tonic-clonic seizures. Ataxia, in addition to myoclonus, occurred in all. Detailed cognitive assessment was not possible, but there was no significant progressive dementia. There was intrafamily variation in severity; three required wheelchairs in adult life; the others could walk unaided. MRI, muscle and skin biopsies on one individual were unremarkable. We mapped the family to a 15-megabase region at the pericentromeric region of chromosome 12 with a maximum lod score of 6.32. Although the phenotype of individual subjects was typical of ULD, the mean age of onset (7.3 years versus 11 years for ULD) was younger. The locus on chromosome 12 does not contain genes for any other form of PME, nor does it have genes known to be related to cystatin B. This represents a new form of PME and we have designated the locus as EPM1B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Establishment of the left-right axis is a fundamental process of vertebrate embryogenesis. Failure to develop left-right asymmetry leads to incorrect positioning and morphogenesis of numerous internal organs, and is proposed to underlie the etiology of several common cardiac malformations. The transcriptional modulator Cited2 is essential for embryonic development: Cited2-null embryos die during gestation with profound developmental abnormalities, including cardiac malformations, exencephaly and adrenal agenesis. Cited2 is also required for normal establishment of the left-right axis; we demonstrate that abnormal heart looping and right atrial and pulmonary isomerism are consistent features of the left-right-patterning defect. We show by gene expression analysis that Cited2 acts upstream of Nodal, Lefty2 and Pitx2 in the lateral mesoderm, and of Lefty1 in the presumptive floor plate. Although abnormal left-right patterning has a major impact on the cardiac phenotype in Cited2-null embryos, laterality defects are only observed in a proportion of these embryos. We have therefore used a combination of high-resolution imaging and three-dimensional (3D) modeling to systematically document the full spectrum of Cited2-associated cardiac defects. Previous studies have focused on the role of Cited2 in cardiac neural crest cell development, as Cited2 can bind the transcription factor Tfap2, and thus affect the expression of Erbb3 in neural crest cells. However, we have identified Cited2-associated cardiac defects that cannot be explained by laterality or neural crest abnormalities. In particular, muscular ventricular septal defects and reduced cell density in the atrioventricular (AV) endocardial cushions are evident in Cited2-null embryos. As we found that Cited2 expression tightly correlated with these sites, we believe that Cited2 plays a direct role in development of the AV canal and cardiac septa. We therefore propose that, in addition to the previously described reduction of cardiac neural crest cells, two other distinct mechanisms contribute to the spectrum of complex cardiac defects in Cited2-null mice; disruption of normal left-right patterning and direct loss of Cited2 expression in cardiac tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is associated with multiple risk factors and is believed to arise from pre-neoplastic lesions, usually in the background of cirrhosis. However, the genetic and epigenetic events of hepatocarcinogenesis are relatively poorly understood. HCC display gross genomic alterations, including chromosomal instability (CIN), CpG island methylation, DNA rearrangements associated with hepatitis B virus (HBV) DNA integration, DNA hypomethylation and, to a lesser degree, microsatellite instability. Various studies have reported CIN at chromosomal regions, 1p, 4q, 5q, 6q, 8p, 10q, 11p, 16p, 16q, 17p and 22q. Frequent promoter hypermethylation and subsequent loss of protein expression has also been demonstrated in HCC at tumor suppressor gene (TSG), p16, p14, p15, SOCS1, RIZ1, E-cadherin and 14-3-3 sigma. An interesting observation emerging from these studies is the presence of a methylator phenotype in hepatocarcinogenesis, although it does not seem advantageous to have high levels of microsatellite instability. Methylation also appears to be an early event, suggesting that this may precede cirrhosis. However, these genes have been studied in isolation and global studies of methylator phenotype are required to assess the significance of epigenetic silencing in hepatocarcinogenesis. Based on previous data there are obvious fundamental differences in the mechanisms of hepatic carcinogenesis, with at least two distinct mechanisms of malignant transformation in the liver, related to CIN and CpG island methylation. The reason for these differences and the relative importance of these mechanisms are not clear but likely relate to the etiopathogenesis of HCC. Defining these broad mechanisms is a necessary prelude to determine the timing of events in malignant transformation of the liver and to investigate the role of known risk factors for HCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB+ APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rms4 mutant of pea (Pisum sativum L.) was used in grafting studies and cytokinin analyses of the root xylem sap to provide evidence that, at least for pea, the shoot can modify the import of cytokinins from the root. The rms4 mutation, which confers a phenotype with increased branching in the shoot, causes a very substantial decrease (down to 40-fold less) in the concentration of zeatin riboside (ZR) in the xylem sap of the roots. Results from grafts between wild-type (WT) and rms4 plants indicate that the concentration of cytokinins in the xylem sap of the roots is determined almost entirely by the genotype of the shoot. WT scions normalize the cytokinin concentration in the sap of rms4 mutant roots, whereas mutant scions cause WT roots to behave like those of self-grafted mutant plants. The mechanism whereby rms4 shoots of pea cause a down-regulation in the export of cytokinins from the roots is unknown at this time. However, our data provide evidence that the shoot transmits a signal to the roots and thereby controls processes involved in the regulation of cytokinin biosynthesis in the root.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An aggregate-forming coccus, isolated twice as the predominant microorganism in sputa from a cystic fibrosis patient on consecutive days, was shown to belong to the species Lautropia mirabilis on the bases of similarities of 16S rRNA gene sequences and phenotype. These isolates of L. mirabilis appear to be the first reported from a patient with cystic fibrosis and outside of Denmark.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herpesviruses, such as murine and human cytomegalovirus (MCMV and HCMV), can establish a persistent infection within the host and have diverse mechanisms as protection from host immune defences'. Several herpesvirus genes that are homologous to host immune modulators have been identified, and are implicated in viral evasion of the host immune response(2,3). The discovery of a viral major histocompatibility complex (MHC) class I homologue, encoded by HCMV(4), led to speculation that it might function as an immune modulator and disrupt presentation of peptides by MHC class I to cytotoxic T cells(5). However, there is no evidence concerning the biological significance of this gene during viral infection. Recent analysis of the MCMV genome has also demonstrated the presence of a MHC class I homologue(6). Here we show that a recombinant MCMV,in which. the gene encoding the class I homologue has been disrupted, has severely restricted replication during the acute stage of infection compared with wild-type MCMV, We demonstrate by in vivo depletion studies that natural killer (NK) cells are responsible for the attenuated phenotype of the mutant. Thus the viral MHC dass I homologue contributes to immune evasion through interference with NK cell-mediated clearance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myelin proteolipid protein (PLP) contains 2 immunodominant encephalitogenic epitopes in SJL mice, namely PLP residues 139-151 and 178-191. DM20, a minor isoform of PLP, lacks residues 116-150 and consequently contains only the single major encephalitogenic epitope 178-191. However, it has been found previously that bovine DM20 is not encephalitogenic in SJL mice. Since residue 188 within peptide 178-191 is phenylalanine (F) in murine DM20 and alanine (A) in bovine DM20, we tested the effect of this difference on the immune responses and induction of EAE. SJL mice were immunized with either highly purified murine or bovine DM20. Residues 178-191 were found to be immunodominant for each, but only murine and not bovine DM20 was encephalitogenic. A synthetic peptide corresponding to the murine 178-191 sequence (F188) was also encephalitogenic, whereas the peptide corresponding to the bovine sequence (A188) was not. Both F188 and A188 bind with high affinity to I-A(s) and both are recognized by the SJL T cell repertoire. A188-specific T cell lines reacted to both A188 and F188, but F188-specific T cell lines were not stimulated by A188. F188-specific T cell lines produced mRNA for the Th1 cytokines IL2 and IFN gamma and, in passive transfer experiments, were encephalitogenic upon stimulation with F188, but not A188. In contrast, A188-specific T cell lines produced mRNA for IL4, IL5 and IL10, in addition to IL2 and IFN gamma, and were not encephalitogenic after stimulation with either F188 or A188. Cotransfer of A188-specific T cell lines with F188-specific T cell lines resulted in protection from EAE. Thus, A188 induces a functionally different phenotype of T cells from that induced by F188. Taken together these data suggest that the failure of bovine DM20 to induce EAE may be attributable to induction of protective rather than pathogenic T cells by the immunodominant epitope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The embryonic peripheral nervous system of Drosophila contains two main types of sensory neurons: type I neurons, which innervate external sense organs and chordotonal organs, and type II multidendritic neurons, Here, we analyse the origin of the difference between type I and type II in the case of the neurons that depend on the proneural genes of the achaete-scute complex (ASC), We show that, in Notch(-) embryos, the type I neurons are missing while type nr neurons are produced in excess, indicating that the type I/type II choice relies on Notch-mediated cell communication, In contrast, both type I and type II neurons are absent in numb(-) embryos and after ubiquitous expression of tramtrack, indicating that the activity of numb and the absence of tramtrack are required to produce both external sense organ and multidendritic neural fates, The analysis of string(-) embryos reveals that when the precursors are unable to divide they differentiate mostly into type II neurons, indicating that the type II is the default neuronal fate, We also report a new mutant phenotype where the ASC-dependent neurons are converted into-type II neurons, providing evidence for the existence of one or more genes required for maintaining the alternative (type I) fate, Our results suggest that the same mechanism of type I/type II specification may operate at a late step of the ASC-dependent lineages, when multidendritic neurons arise as siblings of the external sense organ neurons and, at an early step, when other multidendritic neurons precursors arise as siblings of external sense organ precursors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the development of atherosclerotic lesions, three basic processes occur: 1) invasion of the artery wall by leucocytes, particularly monocytes and T-lymphocytes; 2) smooth muscle phenotypic modulation, proliferation, and synthesis of extracellular matrix; and 3) intracellular (macrophage and smooth muscle) lipoprotein uptake and lipid accumulation. Invasion of the vessel wall by leucocytes is mediated through the expression of adhesion molecules on both leucocytes and the endothelium making them 'sticky'. The adhesion molecules are induced by high serum cholesterol levels or complement fragments. Leucocytes which have adhered to the endothelium are chemo-attracted into the vessel wall by cytokines produced by early arriving leucocytes or by low density lipoprotein which has passively passed into the wall, in the process being trapped and oxidised. The oxidised low density lipoprotein is taken up by scavenger receptors (which are not subject to down-regulation) on both macrophages and smooth muscle cells. The overaccumulation of lipid is toxic to the cells and they die contributing to the central necrotic core. The macrophages and T-lymphocytes produce substances which induce smooth muscle cells of the artery wall to change from a 'contractile' (high volume fraction of myofilaments [V(v)myo]) to a 'synthetic' (low V(v)myo) phenotype. In this altered state they respond to growth factors released from macrophages, platelets, regenerating endothelial cells and smooth muscle cells; produce large amounts of matrix; express lipoprotein scavenger receptors; express adhesion molecules for leucocytes; and express HLA-DR following exposure to the T-lymphocyte product, IFN-delta, suggesting that they can become involved in a generalised immune reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously generated a panel of T helper cell 1 (Th1) clones specific for an encephalitogenic peptide of myelin proteolipid protein (PLP) peptide 139-151 (HSLGKWLGHPDKF) that induces experimental autoimmune encephalomyelitis (EAE) upon adoptive transfer. In spite of the differences in their T cell receptor (TCR) gene usage, all these Th1 clones required W144 as the primary and most critical TCR contact residue for the activation. In this study, we determined the TCR contact residues of a panel of Th2/Th0 clones specific for the PLP peptide 139-151 generated either by immunization with the PLP 139-151 peptide with anti-B7-1 antibody or by immunization with an altered peptide Q144. Using alanine-substituted peptide analogues of the native PLP peptide, we show that the Th2 clones have shifted their primary contact residue to the NH2-terminal end of the peptide. These Th2 cells do not show any dependence on the W144, but show a critical requirement for L141/G142 as their major TCR contact residue. Thus, in contrast with the Th1 clones that did not proliferate to A144-substituted peptide, the Th2 clones tolerated a substitution at position 144 and proliferated to A144 peptide. This alternative A144 reactive repertoire appears to have a critical role in the regulation of autoimmune response to PLP 139-151 because preimmunization with A144 to expand the L141/G142-reactive repertoire protects mice from developing EAE induced with the native PLP 139-151 peptide. These data suggest that a balance between two different T cell repertoires specific for same autoantigenic epitope can determine disease phenotype, i.e., resistance or susceptibility to an autoimmune disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB(+) APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cDNAs encoding wild type (WT) human receptor tyrosine kinase c-Kit and a constitutively activated mutant, V816Kit, were introduced into granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent early murine hemopoietic cells, which had been transformed with activated Myb, WTKit cells were able to grow in the presence of the human ligand for Kit, stem cell factor (SCF), but displayed reduced growth and clonogenic potential in either SCF or GM-CSF compared with the parental cells in GM-CSF. In contrast, V816Kit cells grew without factor at a higher rate than the parental cells in GM-CSF and displayed increased clonogenicity. Dissection of the growth characteristics in liquid culture showed that in the presence of appropriate factors, the different populations had similar proliferation rates, but that V816Kit profoundly increased cell survival compared with WTKit or parental cells, This suggests that the signals transduced by WTKit activated with SCF, and by V816Kit, were not identical. Also, WTKit and V816Kit-expressing cells both varied from the early myeloid progenitor phenotype of the parental cells and gave rise to a small number of large to giant adherent cells that expressed macrophage (alpha-naphthyl acetate) esterase and neutrophil (naphtol-AS-D-chloroacetate) esterase, were highly phagocytic and phenotypically resembled histiocytes. Thus, WTKit activated by SCF and V816Kit were able to induce differentiation in a proportion of Myb-transformed myeloid cells. The factor independent V816Kit cells, unlike the parental and WTKit expressing cells, were shown to produce tumors of highly mitotic, invasive cells at various stages of differentiation in syngeneic mice. These results imply that constitutively activated Kit can promote the development of differentiated myeloid tumors and that its oncogenic effects are not restricted to lineages (mast cell and B-cell acute lymphoblastic leukemia), which have been reported previously. Furthermore, the mixed populations of cells in culture and in the tumors phenotypically resembled the leukemic cells from patients with monocytic leukemia with histiocytic differentiation (acute myeloid leukemia-M5c), a newly proposed subtype of myeloid leukemia. (C) 1997 by The American Society of Hematology.