136 resultados para Wear-Ever Preserving Kettle.
Resumo:
High-speed milling (HSM) has many advantages over conventional machining. Among these advantages, the lower cutting force associated with the machining process is of particular significance for Nitinol alloys because their machined surfaces show less strain hardening. In this article, a systematic study has been carried out to investigate the machining characteristics of a Ni50.6Ti49.4 alloy in HSM. The effects of cutting speed, feed rate, and depth of cut on machined surface characteristics and tool wear are studied. It is found that an increase in cutting speed has resulted in a better surface finish and less work hardening. This is attributed to the reduction of chip cross-sectional area or chip thickness, which thus leads to a lower cutting force or load.
Resumo:
Simple equations are proposed for determining elastic modulus and hardness properties of thin films on substrates from nanoindentation experiments. An empirical formulation relates the modulus E and hardness H of the film/substrate bilayer to corresponding material properties of the constituent materials via a power-law relation. Geometrical dependence of E and H is wholly contained in the power-law exponents, expressed here as sigmoidal functions of indenter penetration relative to film thickness. The formulation may be inverted to enable deconvolution of film properties from data on the film/substrate bilayers. Berkovich nanoindentation data for dense oxide and nitride films on silicon substrates are used to validate the equations and to demonstrate the film property deconvolution. Additional data for less dense nitride films are used to illustrate the extent to which film properties may depend on the method of fabrication.
Resumo:
Background: The Royal Australian and New Zealand College of Psychiatrists is co-ordinating the development of clinical practice guidelines (CPGs) in psychiatry, funded under the National Mental Health Strategy (Australia) and the New Zealand Health Funding Authority. This paper presents CPGs for schizophrenia and related disorders. Over the past decade schizophrenia has become more treatable than ever before. A new generation of drug therapies, a renaissance of psychological and psychosocial interventions and a first generation of reform within the specialist mental health system have combined to create an evidence-based climate of realistic optimism. Progressive neuroscientific advances hold out the strong possibility of more definitive biological treatments in the near future. However, this improved potential for better outcomes and quality of life for people with schizophrenia has not been translated into reality in Australia. The efficacy-effectiveness gap is wider for schizophrenia than any other serious medical disorder. Therapeutic nihilism, under-resourcing of services and a stalling of the service reform process, poor morale within specialist mental health services, a lack of broad-based recovery and life support programs, and a climate of tenacious stigma and consequent lack of concern for people with schizophrenia are the contributory causes for this failure to effectively treat. These guidelines therefore tackle only one element in the endeavour to reduce the impact of schizophrenia. They distil the current evidence-base and make recommendations based on the best available knowledge. Method: A comprehensive literature review (1990-2003) was conducted, including all Cochrane schizophrenia reviews and all relevant meta-analyses, and a number of recent international clinical practice guidelines were consulted. A series of drafts were refined by the expert committee and enhanced through a bi-national consultation process. Treatment recommendations: This guideline provides evidence-based recommendations for the management of schizophrenia by treatment type and by phase of illness. The essential features of the guidelines are: (i) Early detection and comprehensive treatment of first episode cases is a priority since the psychosocial and possibly the biological impact of illness can be minimized and outcome improved. An optimistic attitude on the part of health professionals is an essential ingredient from the outset and across all phases of illness. (ii) Comprehensive and sustained intervention should be assured during the initial 3-5 years following diagnosis since course of illness is strongly influenced by what occurs in this 'critical period'. Patients should not have to 'prove chronicity' before they gain consistent access and tenure to specialist mental health services. (iii) Antipsychotic medication is the cornerstone of treatment. These medicines have improved in quality and tolerability, yet should be used cautiously and in a more targeted manner than in the past. The treatment of choice for most patients is now the novel antipsychotic medications because of their superior tolerability and, in particular, the reduced risk of tardive dyskinesia. This is particularly so for the first episode patient where, due to superior tolerability, novel agents are the first, second and third line choice. These novel agents are nevertheless associated with potentially serious medium to long-term side-effects of their own for which patients must be carefully monitored. Conventional antipsychotic medications in low dosage may still have a role in a small proportion of patients, where there has been full remission and good tolerability; however, the indications are shrinking progressively. These principles are now accepted in most developed countries. (vi) Clozapine should be used early in the course, as soon as treatment resistance to at least two antipsychotics has been demonstrated. This usually means incomplete remission of positive symptomatology, but clozapine may also be considered where there are pervasive negative symptoms or significant or persistent suicidal risk is present. (v) Comprehensive psychosocial interventions should be routinely available to all patients and their families, and provided by appropriately trained mental health professionals with time to devote to the task. This includes family interventions, cognitive-behaviour therapy, vocational rehabilitation and other forms of therapy, especially for comorbid conditions, such as substance abuse, depression and anxiety. (vi) The social and cultural environment of people with schizophrenia is an essential arena for intervention. Adequate shelter, financial security, access to meaningful social roles and availability of social support are essential components of recovery and quality of life. (vii) Interventions should be carefully tailored to phase and stage of illness, and to gender and cultural background. (viii) Genuine involvement of consumers and relatives in service development and provision should be standard. (ix) Maintenance of good physical health and prevention and early treatment of serious medical illness has been seriously neglected in the management of schizophrenia, and results in premature death and widespread morbidity. Quality of medical care for people with schizophrenia should be equivalent to the general community standard. (x) General practitioners (GPs)s should always be closely involved in the care of people with schizophrenia. However, this should be truly shared care, and sole care by a GP with minimal or no special Optimal treatment of schizophrenia requires a multidisciplinary team approach with a consultant psychiatrist centrally involved.
Resumo:
This paper is a foreword to a series of papers commissioned on 'the impact of science on the beef industry', where the Beef CRC-related collaborative scientific work of Professor Bernard Michael Bindon will be reviewed. These papers will be presented in March 2006, as part of a 'festschrift' to recognise his wider contributions to the Australian livestock industries for over 40 years. Bindon's career involved basic and applied research in many areas of reproductive physiology, genetics, immunology, nutrition, meat science and more recently genomics, in both sheep and cattle. Together with his collaborators, he made large contributions to animal science by improving the knowledge of mechanisms regulating reproductive functions and in elucidating the physiology and genetics of high fecundity livestock. His collaborative studies with many colleagues of the reproductive biology and genetics of the Booroola Merino were amongst the most extensive ever conducted on domestic livestock. He was instrumental in the development of immunological techniques to control ovulation rate and in examining the application of these and other techniques to increase beef cattle reproductive output. This paper tracks his investigations and achievements both within Australia and internationally. In the later stages of his career he was the major influence in attracting a large investment in Cooperative Research Centres for the Australian cattle industry, in which he directed a multi-disciplinary approach to investigate, develop and disseminate science and technology to improve commercial cattle productivity.
Resumo:
We theoretically study the Hilbert space structure of two neighboring P-donor electrons in silicon-based quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed electronic structure calculations of both the single donor electron wave function and the two-electron pair wave function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the Heitler-London approximation to describe the two-electron donor pair wave function. We determined the excitation spectrum of the two-donor system, and study its dependence on strain, lattice position, and interdonor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that both electrons will reside on the same P donor. These two quantities are very important for logical operations in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, while the magnitude of the double occupancy probability can affect the error rate.
Resumo:
Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.
Resumo:
We present an algebraic Bethe ansatz for the anisotropic supersymmetric U model for correlated electrons on the unrestricted 4(L)-dimensional electronic Hilbert space x(n=l)(L)C(4)(where L is the lattice length). The supersymmetry algebra of the local Hamiltonian is the quantum superalgebra U-q[gl(2\1)] and the model contains two symmetry-preserving free real parameters; the quantization parameter q and the Hubbard interaction parameter U. The parameter U arises from the one-parameter family of inequivalent typical four-dimensional irreps of U-q[gl(2\1)]. Eigenstates of the model are determined by the algebraic Bethe ansatz on a one-dimensional periodic lattice.
Resumo:
The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.
Resumo:
We calculate the stationary state of the system of two non-identical two-level atoms driven by a finite-bandwidth two-mode squeezed vacuum. It is well known that two identical two-level atoms driven by a broadband squeezed vacuum may decay to a pure state, called the pure two-atom squeezed state, and that the presence of the antisymmetric state can change its purity. Here, we show that for small interatomic separations the stationary state of two non-identical atoms is not sensitive to the presence of the antisymmetric state and is the pure two-atom squeezed state. This effect is a consequence of the fact that in the system of two non-identical atoms the antisymmetric state is no longer the trapping state. We also calculate the squeezing properties of the emitted field and find that the squeezing spectrum of the output field may exhibit larger squeezing than that in the input squeezed vacuum. Moreover, we show that squeezing in the total field attains the optimum value which can ever be achieved in the field emitted by two atoms.
Resumo:
An experimental white cast iron with the unprecedented fracture tough ness of 40 MPa m(1/2) is currently being studied to determine the mechanisms of toughening. This paper reports the investigation of the role of strain-induced martensitic (SIM) transformation. The dendritic microconstituent in the toughened alloy consists primarily of retained austenite, with precipitated M(7)C(3) carbides and some martensite. Refrigeration experiments and differential scanning calorimetry (DSC) were used to demonstrate, firstly, that this retained austenite has an ''effective'' sub-ambient M(S) temperature and, secondly, that SIM transformation can occur at ambient temperatures. Comparison between room temperature and elevated temperature K-Ic tests showed that the observed SIM produces a transformation toughening response in the alloy, contributing to, but not fully accounting for, its high tough ness. SIM as a mechanism for transformation toughening has not previously been reported for white cast irons. Microhardness traverses on crack paths and X-ray diffraction (XRD) on fracture surfaces confirmed the interpretation of the K-Ic experiments. Further DSC and quantitative XRD showed that, as heat-treatment temperature is varied, there is a correlation between fracture toughness and the volume fraction of unstable retained austenite.
Resumo:
Objective. To examine possible risk factors in post-stroke depression (PSD) other than site of lesion in the brain Data sources. 191 first-ever stroke patients were examined physically shortly after their stroke and examined psychiatrically and physically 4 months post-stroke. Setting. A geographically defined segment of the metropolitan area of Perth, Western Australia, from which all strokes over a course of 18 months were examined (the Perth Community Stroke Study). Measures. Psychiatric Assessment Schedule, Mini Mental State Examination, Barthel Index, Frenchay Activities Index, physical illness and sociodemographic data were collected. Post-stroke depression (PSD) included both major depression and minor depression (dysthymia without the 2-year time stipulation) according to DSM-III (American Psychiatric Association) criteria. Patients depressed at the time of the stroke were excluded. Patients. 191 first-ever stroke patients, 111M, 80F, 28% had PSD, 17% major and 11% minor depression. Results. Significant associations with PSD at 4 months were major functional impairment, living in a nursing home, being divorced and having a high pre-stroke alcohol intake (M only). There was no significant association with age, sex, social class, cognitive impairment or pre-stroke physical illness. Conclusion. Results favoured the hypothesis that depression in an unselected group of stroke patients is no more common, and of no more specific aetiology, than it is among elderly patients with other physical illness.