97 resultados para Understanding by Design
Resumo:
A straightforward method is proposed for computing the magnetic field produced by a circular coil that contains a large number of turns wound onto a solenoid of rectangular cross section. The coil is thus approximated by a circular ring containing a continuous constant current density, which is very close to the real situation when sire of rectangular cross section is used. All that is required is to evaluate two functions, which are defined as integrals of periodic quantities; this is done accurately and efficiently using trapezoidal-rule quadrature. The solution can be obtained so rapidly that this procedure is ideally suited for use in stochastic optimization, An example is given, in which this approach is combined with a simulated annealing routine to optimize shielded profile coils for NMR.
Disentangling feelings from understanding and behavioural responses: A lesson from empathy in autism
Resumo:
Coastal wetlands are dynamic and include the freshwater-intertidal interface. In many parts of the world such wetlands are under pressure from increasing human populations and from predicted sea-level rise. Their complexity and the limited knowledge of processes operating in these systems combine to make them a management challenge.Adaptive management is advocated for complex ecosystem management (Hackney 2000; Meretsky et al. 2000; Thom 2000;National Research Council 2003).Adaptive management identifies management aims,makes an inventory/environmental assessment,plans management actions, implements these, assesses outcomes, and provides feedback to iterate the process (Holling 1978;Walters and Holling 1990). This allows for a dynamic management system that is responsive to change. In the area of wetland management recent adaptive approaches are exemplified by Natuhara et al. (2004) for wild bird management, Bunch and Dudycha (2004) for a river system, Thom (2000) for restoration, and Quinn and Hanna (2003) for seasonal wetlands in California. There are many wetland habitats for which we currently have only rudimentary knowledge (Hackney 2000), emphasizing the need for good information as a prerequisite for effective management. The management framework must also provide a way to incorporate the best available science into management decisions and to use management outcomes as opportunities to improve scientific understanding and provide feedback to the decision system. Figure 9.1 shows a model developed by Anorov (2004) based on the process-response model of Maltby et al. (1994) that forms a framework for the science that underlies an adaptive management system in the wetland context.
Resumo:
An important feature of some conceptual modelling grammars is the features they provide to allow database designers to show real-world things may or may not possess a particular attribute or relationship. In the entity-relationship model, for example, the fact that a thing may not possess an attribute can be represented by using a special symbol to indicate that the attribute is optional. Similarly, the fact that a thing may or may not be involved in a relationship can be represented by showing the minimum cardinality of the relationship as zero. Whether these practices should be followed, however, is a contentious issue. An alternative approach is to eliminate optional attributes and relationships from conceptual schema diagrams by using subtypes that have only mandatory attributes and relationships. In this paper, we first present a theory that led us to predict that optional attributes and relationships should be used in conceptual schema diagrams only when users of the diagrams require a surface-level understanding of the domain being represented by the diagrams. When users require a deep-level understanding, however, optional attributes and relationships should not be used because they undermine users' abilities to grasp important domain semantics. We describe three experiments which we then undertook to test our predictions. The results of the experiments support our predictions.
Resumo:
In the design of lattice domes, design engineers need expertise in areas such as configuration processing, nonlinear analysis, and optimization. These are extensive numerical, iterative, and lime-consuming processes that are prone to error without an integrated design tool. This article presents the application of a knowledge-based system in solving lattice-dome design problems. An operational prototype knowledge-based system, LADOME, has been developed by employing the combined knowledge representation approach, which uses rules, procedural methods, and an object-oriented blackboard concept. The system's objective is to assist engineers in lattice-dome design by integrating all design tasks into a single computer-aided environment with implementation of the knowledge-based system approach. For system verification, results from design examples are presented.
Resumo:
Organic petrology supported by electron microscopical and micro-analytical techniques was applied to organic matter in Proterozoic sediments to better understand hydrothermal processes responsible for ore-grade mineralisation. It was shown that organic maturation was not only closely linked to the geological history of the sediments, but also highlighted heat transfer by convection as differentiated from conduction solely through sediment burial and step-wise subsidence. Water-rock ratios effect organic maturation in hydrothermal systems, and erratic reflectance profiles are indicators of convective heat transfer. Identification and characterisation of organic materials in terms of source rock and migrated hydrocarbons was shown to be a powerful tool in reconstructing the thermal history of sediments, identifying hydrothermal episodes, fluid pathways and heat source in the northern Australian Proterozoic basins. Higher reflectance of organic matter towards the central parts of the Mount Isa Basin and some of the most northerly parts point to proximity to higher heat flow at times, in contrast to relatively low temperatures prevailing in the western parts of the basin, next to the Murphy Inlier. A close correlation shown between peak organic reflectance values and super-sequence boundaries farther highlighted the valuable information to be gained from organic petrology, by allowing the separation of processes responsible for metal dissolution and transportation from those inducing precipitation. (C) 2001 Elsevier Science B.V All rights reserved.
Resumo:
There are many methods for the analysis and design of embedded cantilever retaining walls. They involve various different simplifications of the pressure distribution to allow calculation of the limiting equilibrium retained height and the bending moment when the retained height is less than the limiting equilibrium value, i.e. the serviceability case. Recently, a new method for determining the serviceability earth pressure and bending moment has been proposed. This method makes an assumption defining the point of zero net pressure. This assumption implies that the passive pressure is not fully mobilised immediately below the excavation level. The finite element analyses presented in this paper examine the net pressure distribution on walls in which the retained height is less, than the limiting equilibrium value. The study shows that for all practical walls, the earth pressure distributions on the front and back of the wall are at their limit values, Kp and K-a respectively, when the lumped factor of safety F-r is less than or equal to2.0. A rectilinear net pressure distribution is proposed that is intuitively logical. It produces good predictions of the complete bending moment diagram for walls in the service configuration and the proposed method gives results that have excellent agreement with centrifuge model tests. The study shows that the method for determining the serviceability bending moment suggested by Padfield and Mair(1) in the CIRIA Report 104 gives excellent predictions of the maximum bending moment in practical cantilever walls. It provides the missing data that have been needed to verify and justify the CIRIA 104 method.
Resumo:
The South African style SAG (RoM) mills operate in a window that is almost exclusive from the operation of the Australian and North American mills that have been used for the development of SAG mill models. Combining good quality, test data from the RoM mills is extending and improving these models, and assisting in a practical manner in improving our understanding of SAG/AG milling. Data from high mill loads, both in absolute filling and ball loading, have been used to extend and improve the JK SAG mill model. This improved understanding has been successfully applied to increasing the throughput of a mill by 8%. Data is presented on relationships between power and load for high mill loading. Slurry pooling is common in closed-circuit RoM mills, and the detrimental effect of this has been dramatically demonstrated at ALCOA with a mill throughput increase of over 20%. Techniques for calculating the effects of slurry pooling have been developed and a new pulp lifter system designed to give optimal slurry discharge. The influence of mill speed in shifting the product size distribution has also been measured. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, an attempt was made to investigate a fundamental problem related to the flexural waves excited by rectangular transducers. Due to the disadvantages of the Green's function approach for solving this problem, a direct and effective method is proposed using a multiple integral transform method and contour integration technique. The explicit frequency domain solutions obtained from this newly developed method are convenient for understanding transducer behavior and theoretical optimization and experimental calibration of rectangular transducers. The time domain solutions can then be easily obtained by using the fast Fourier transform technique. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
It has been previously demonstrated that aspartic, serine, metallo and cysteine proteases bind to their inhibitors and substrate analogues in a single conformation, the saw-tooth or extended beta-strand. Consequently a generic approach to the development of protease inhibitors is the use of constraints that conformationally restrict putative inhibitor molecules to an extended form. In this way the inhibitor is pre-organized for binding to a protease and does not need to rearrange its structure. One constraining device that has proven to be effective for such pre-organization is macrocyclization. This article illustrates the general principle that macrocycles, especially those composed of 3-4 amino acids and usually 13-17 ring atoms, can effectively mimic the extended conformation of short peptide sequences. Such structure-stabilising macrocycles are stable to degradation by proteases, valuable components of potent protease inhibitors, and in many cases they are also bioavailable.
Resumo:
The cystine knot structural motif is present in peptides and proteins from a variety of species, including fungi, plants, marine molluscs. insects and spiders. It comprises an embedded ring formed by two disulfide bonds and their connecting backbone segments which is threaded by a third disulfide bond. It is invariably associated with nearby beta-sheet structure and appears to be a highly efficient motif for structure stabilization. Because of this stability it makes an ideal framework for molecular engineering applications. In this review we summarize the main structural features of the cystine knot motif, focussing on toxin molecules containing either the inhibitor cystine knot or the cyclic cystine knot. Peptides containing these motifs are 26-48 residues long and include ion channel blockers, haemolytic agents, as well as molecules having antiviral and antibacterial activities. The stability of peptide toxins containing the cystine knot motif, their range of bioactivities and their unique structural scaffold can be harnessed for molecular engineering applications and in drug design. Applications of cystine knot molecules for the treatment of pain. and their potential use in antiviral and antibacterial applications are described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
SFTI-1 is a recently discovered cyclic peptide trypsin inhibitor from sunflower seeds comprising 14 amino acid residues. It is the most potent known Bowman-Birk inhibitor and the only naturally occurring cyclic one. The solution structure of SFTI-1 has been determined by H-1-NMR spectroscopy and compared with a synthetic acyclic permutant. The solution structures of both are remarkably similar. The lowest energy structures from each family of 20 structures of cyclic and acyclic SFTI-1 have an rmsd over the backbone and heavy atoms of 0.29 Angstrom and 0.66 Angstrom, respectively. The structures consist of two short antiparallel beta -strands joined by an extended loop containing the active site at one end. Cyclic SFTI-1 also has a hairpin turn completing the cycle. Both molecules contain particularly stable arrangements of cross-linking hydrogen bonds between the beta -strands and a single disulfide bridge, making them rigid and well defined in solution. These stable arrangements allow both the cyclic and acyclic variants of SFTI-1 to inhibit trypsin with very high potencies (0.5 nM and 12.1 nM, respectively). The cyclic nature of SFTI-1 appears to have evolved to provide higher trypsin inhibition as well as higher stability. The solution structures are similar to the crystal structure of the cyclic inhibitor in complex with trypsin. The lack of a major conformational change upon binding suggests that the structure of SFTI-1 is rigid and already pre-organized for maximal binding due to minimization of entropic losses compared to a more flexible ligand. These properties make SFTI-1 an ideal platform for the design of small peptidic pharmaceuticals or pesticides. (C) 2001 Academic Press.