104 resultados para Ultrathin layers
Resumo:
A 2-m, adiabatic column has been successfully refurbished and recommissioned for coal self-heating research at The University of Queensland. Subbituminous coal from the Callide Coalfields reached thermal runaway in just under 19 days from a starting temperature of 20-22 degreesC. The coal was loaded as two layers, with an R-70 index of 2.73 degreesC h(-1) and 5.90 degreesC h(-1) for the upper layer and lower layer respectively. Initially, a hotspot developed in the upper layer between 120 and 140 cm from the air inlet due to moisture adsorption. After 7 days, self-heating in the lower half of the column began to take over, consistent with the higher R-70 index of this coal. The location of the final hotspot was approximately 60 cm from the air inlet. Further tests on Australian coals, with the column, will enable a better understanding of coal self-heating under conditions closely resembling mining, transport and storage of coal. The results from the column will also provide industry with the information needed to manage the coal self-heating hazard. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.
Resumo:
The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Density functional theory for adsorption in carbons is adapted here to incorporate a random distribution of pore wall thickness in the solid, and it is shown that the mean pore wall thickness is intimately related to the pore size distribution characteristics. For typical carbons the pore walls are estimated to comprise only about two graphene layers, and application of the modified density functional theory approach shows that the commonly used assumption of infinitely thick walls can severely affect the results for adsorption in small pores under both supercritical and subcritical conditions. Under supercritical conditions the Henry's law coefficient is overpredicted by as much as a factor of 2, while under subcritical conditions pore wall heterogeneity appears to modify transitions in small pores into a sequence of smaller ones corresponding to pores with different wall thicknesses. The results suggest the need to improve current pore size distrubution analysis methods to allow for pore wall heterogeneity. The density functional theory is further extended here to allow for interpore adsorbate interactions, and it appears that these interaction are negligible for small molecules such as nitrogen but significant for more strongly interacting heavier molecules such as butane, for which the traditional independent pore model may not be adequate.
Resumo:
A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).
Resumo:
In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Anew thermodynamic approach has been developed in this paper to analyze adsorption in slitlike pores. The equilibrium is described by two thermodynamic conditions: the Helmholtz free energy must be minimal, and the grand potential functional at that minimum must be negative. This approach has led to local isotherms that describe adsorption in the form of a single layer or two layers near the pore walls. In narrow pores local isotherms have one step that could be either very sharp but continuous or discontinuous benchlike for a definite range of pore width. The latter reflects a so-called 0 --> 1 monolayer transition. In relatively wide pores, local isotherms have two steps, of which the first step corresponds to the appearance of two layers near the pore walls, while the second step corresponds to the filling of the space between these layers. All features of local isotherms are in agreement with the results obtained from the density functional theory and Monte Carlo simulations. The approach is used for determining pore size distributions of carbon materials. We illustrate this with the benzene adsorption data on activated carbon at 20, 50, and 80 degreesC, argon adsorption on activated carbon Norit ROX at 87.3 K, and nitrogen adsorption on activated carbon Norit R1 at 77.3 K.
Resumo:
A theoretical analysis of adsorption of mixtures containing subcritical adsorbates into activated carbon is presented as an extension to the theory for pure component developed earlier by Do and coworkers. In this theory, adsorption of mixtures in a pore follows a two-stage process, similar to that for pure component systems. The first stage is the layering of molecules on the surface, with the behavior of the second and higher layers resembling to that of vapor-liquid equilibrium. The second stage is the pore-filling process when the remaining pore width is small enough and the pressure is high enough to promote the pore filling with liquid mixture having the same compositions as those of the outermost molecular layer just prior to pore filling. The Kelvin equation is applied for mixtures, with the vapor pressure term being replaced by the equilibrium pressure at the compositions of the outermost layer of the liquid film. Simulations are detailed to illustrate the effects of various parameters, and the theory is tested with a number of experimental data on mixture. The predictions were very satisfactory.
Resumo:
In this paper we analyzed the adsorption of gases and vapors on graphitised thermal carbon black by using a modified DFT-lattice theory, in which we assume that the behavior of the first layer in the adsorption film is different from those of second and higher layers. The effects of various parameters on the topology of the adsorption isotherm were first investigated, and the model was then applied in the analysis of adsorption data of numerous substances on carbon black. We have found that the first layer in the adsorption film behaves differently from the second and higher layers in such a way that the adsorbate-adsorbate interaction energy in the first layer is less than that of second and higher layers, and the same is observed for the partition function. Furthermore, the adsorbate-adsorbate and adsorbate-adsorbent interaction energies obtained from the fitting are consistently lower than the corresponding values obtained from the viscosity data and calculated from the Lorentz-Berthelot rule, respectively.
Resumo:
Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.
Resumo:
The pore structure formation in bentonite, pillared with a mixed sol of silicon and titanium hydroxides and treated subsequently with quaternary ammonium surfactants, is investigated. The surfactant micelles act as a template, similar to their role in MCM41 synthesis. Because both the surfactant micelles and the sol particles are positively charged, it is greatly favorable for them to form meso-phase assembles in the galleries between the clay layers that bear negative charges. Besides, the sol particles do not bond the clay layers strongly as other kinds of pillar precursors do, so that the treatment with surfactants can result in radical structure changes in sol-pillared clays. This allows us to tailor the pore structure of these porous clays by choice of surfactant. The surfactant treatment also results in profound increases in porosity and improvement in thermal stability. Therefore, the product porous clays have great potential to be Used to deal with large molecules or at high operating temperatures. We also found that titanium in these samples is highly dispersed in the silica matrix rather than existing in the form of small particles of pure titania. Such highly dispersed Ti active centers may offer excellent activities for catalytic oxidation reactions such as alkanes into alcohols and ketones.
Resumo:
The distributions of the Eph-class receptors EphA4 and EphB 1, and their ligands ephrin-A2, ephrin-B1, and ephrin-B2, were analysed by immunostaining in the mouse inner ear. Complementary patterns of EphA4 and its potential ligand ephrin-A2 were found, with ephrin-A2 in many of the structures lining the cochlear duct and within the cochlear nerve cells, and EphA4 in the deeper structures underlying the cochlear duct and in the cells lining the nerve pathway. EphB1 and its potential ligands ephrin-B1 and ephrin-B2 showed a segregated layered expression in the lateral wall of the cochlear duct (the external sulcus), which together with EphA4 expressed in the area, form a four-layered structure with an alternating pattern of receptors and ligands in the different layers. This arrangement gives the potential for different bidirectional Eph-mediated interactions between each of the layers. The results suggest that the Eph system in the cochlea may have a role in maintaining cell segregation during phases of cochlear development. (C) 2002 Wiley-Liss, Inc.
Resumo:
Cell surface glycoconjugates have been implicated in the growth and guidance of subpopulations of primary olfactory axons. While subpopulations of primary olfactory neurons have been identified by differential expression of carbohydrates in the rat there are few reports of similar subpopulations in the mouse. We have examined the spatiotemporal expression pattern of glycoconjugates recognized by the lectin from Wisteria floribunda (WFA) in the mouse olfactory system. In the developing olfactory neuroepithelium lining the nasal cavity, WFA stained a subpopulation of primary olfactory neurons and the fascicles of axons projecting to the target tissue, the olfactory bulb. Within the developing olfactory bulb, WFA stained the synaptic neuropil of the glomerular and external plexiform layers. In adults, strong expression of WFA ligands was observed in second-order olfactory neurons as well as in neurons in several higher order olfactory processing centres in the brain. Similar, although distinct, staining of neurons in the olfactory pathway was detected with Dolichos biflorus agglutinin. These results demonstrate that unique subpopulations of olfactory neurons are chemically coded by the expression of glycoconjugates. The conserved expression of these carbohydrates across species suggests they play an important role in the functional organization of this region of the nervous system.
Resumo:
A long-term experiment was conducted to compare the effects of flowing and still water on growth, and the relationship between water flow and nutrients, in Aponogeton elongatus, a submerged aquatic macrophyte. A. elongatus plants were grown for 23 weeks with three levels of nutrition (0, 0.5 and 1g Osmocote Plus(R) fertiliser pot(-1)) in aquaria containing stirred or unstirred water. Fertilized plants grew much better than non-fertilized. The highest fertilizer level produced 29% wider leaves and 58% higher total dry weight in stirred water. Stirred water increased leaf area by 40% and tuber size by 81%, but only with the highest level of nutrition. These results suggest that this plant depends on its roots for mineral uptake, rather than from the open water, and the major limitation to growth in still water is the supply of dissolved inorganic carbon. It was the combined effects of nutrient availability and stirring that produced the strongest response in plant growth, morphology and composition. This study provides some explanation for the observations of others that these plants grow best in creeks or river systems with permanently flowing water.
Resumo:
Whole body studies of Plotosus tandanus revealed that ampullary pores occur over the entire body of the fish, but are in higher concentrations in the head region. These pores give rise to a short canal (50-60 mum) produced by columnar epithelial cells bound together by tight junctions and desmosomes. At the junction. of the canal and the ampulla, cuboidal epithelial cells make up the wall. The ampulla consists of layers of collagen fibers that surround flattened epithelial cells in the lateral regions and give rise to supportive cells-that encase a small number of receptor cells (10-15). The ampullary wall comprises several types of cells that are adjoined via tight junctions and desmosomes between cell types. The ovoid receptor cells possess microvilli along the luminar apical area. Beneath this area, the cells are rich in mitochondria and rough endoplasmic reticulum. An unmyelinated neuron adjoins with each receptor cell opposite multiple presynaptic bodies. This form of microampulla has not been previously described within the Family Plotosidae. (C) 2002 Wiley-Liss, Inc.