112 resultados para Small-error approximation
Resumo:
We introduce a model for the dynamics of a patchy population in a stochastic environment and derive a criterion for its persistence. This criterion is based on the geometric mean (GM) through time of the spatial-arithmetic mean of growth rates. For the population to persist, the GM has to be greater than or equal to1. The GM increases with the number of patches (because the sampling error is reduced) and decreases with both the variance and the spatial covariance of growth rates. We derive analytical expressions for the minimum number of patches (and the maximum harvesting rate) required for the persistence of the population. As the magnitude of environmental fluctuations increases, the number of patches required for persistence increases, and the fraction of individuals that can be harvested decreases. The novelty of our approach is that we focus on Malthusian local population dynamics with high dispersal and strong environmental variability from year to year. Unlike previous models of patchy populations that assume an infinite number of patches, we focus specifically on the effect that the number of patches has on population persistence. Our work is therefore directly relevant to patchily distributed organisms that are restricted to a small number of habitat patches.
Resumo:
Loss networks have long been used to model various types of telecommunication network, including circuit-switched networks. Such networks often use admission controls, such as trunk reservation, to optimize revenue or stabilize the behaviour of the network. Unfortunately, an exact analysis of such networks is not usually possible, and reduced-load approximations such as the Erlang Fixed Point (EFP) approximation have been widely used. The performance of these approximations is typically very good for networks without controls, under several regimes. There is evidence, however, that in networks with controls, these approximations will in general perform less well. We propose an extension to the EFP approximation that gives marked improvement for a simple ring-shaped network with trunk reservation. It is based on the idea of considering pairs of links together, thus making greater allowance for dependencies between neighbouring links than does the EFP approximation, which only considers links in isolation.
Resumo:
A model is introduced for two reduced BCS systems which are coupled through the transfer of Cooper pairs between the systems. The model may thus be used in the analysis of the Josephson effect arising from pair tunneling between two strongly coupled small metallic grains. At a particular coupling strength the model is integrable and explicit results are derived for the energy spectrum, conserved operators, integrals of motion, and wave function scalar products. It is also shown that form factors can be obtained for the calculation of correlation functions. Furthermore, a connection with perturbed conformal field theory is made.
Resumo:
The numerical implementation of the complex image approach for the Green's function of a mixed-potential integralequation formulation is examined and is found to be limited to low values of k(0) rho (in this context k(0) rho = 2 pirho/ lambda(0), where rho is the distance between the source and the field points of the Green's function and lambda(0) is the free space wavelength). This is a clear limitation for problems of large dimension or high frequency where this limit is easily exceeded. This paper examines the various strategies and proposes a hybrid method whereby most of the above problems can be avoided. An efficient integral method that is valid for large k(0) rho is combined with the complex image method in order to take advantage of the relative merits of both schemes. It is found that a wide overlapping region exists between the two techniques allowing a very efficient and consistent approach for accurately calculating the Green's functions. In this paper, the method developed for the computation of the Green's function is used for planar structures containing both lossless and lossy media.
Resumo:
A well-known, and unresolved, conjecture states that every partial Steiner triple system of order u can be embedded in a Steiner triple system of order v for all v equivalent to 1 or 3 (mod 6), v greater than or equal to 2u + 1. However, some partial Steiner triple systems of order u can be embedded in Steiner triple systems of order v < 2u + 1. A more general conjecture that considers these small embeddings is presented and verified for some cases. (C) 2002 Wiley Periodicals, Inc.
Resumo:
In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example. (C) 2002 Elsevier Science (USA).
Resumo:
Accurate habitat mapping is critical to landscape ecological studies such as required for developing and testing Montreal Process indicator 1.1e, fragmentation of forest types. This task poses a major challenge to remote sensing, especially in mixedspecies, variable-age forests such as dry eucalypt forests of subtropical eastern Australia. In this paper, we apply an innovative approach that uses a small section of one-metre resolution airborne data to calibrate a moderate spatial resolution model (30 m resolution; scale 1:50 000) based on Landsat Thematic Mapper data to estimate canopy structural properties in St Marys State Forest, near Maryborough, south-eastern Queensland. The approach applies an image-processing model that assumes each image pixel is significantly larger than individual tree crowns and gaps to estimate crown-cover percentage, stem density and mean crown diameter. These parameters were classified into three discrete habitat classes to match the ecology of four exudivorous arboreal species (yellowbellied glider Petaurus australis, sugar glider P. breviceps, squirrel glider P. norfolcensis , and feathertail glider Acrobates pygmaeus), and one folivorous arboreal marsupial, the greater glider Petauroides volans. These species were targeted due to the known ecological preference for old trees with hollows, and differences in their home range requirements. The overall mapping accuracy, visually assessed against transects (n = 93) interpreted from a digital orthophoto and validated in the field, was 79% (KHAT statistic = 0.72). The KHAT statistic serves as an indicator of the extent that the percentage correct values of the error matrix are due to ‘true’ agreement verses ‘chance’ agreement. This means that we are able to reliably report on the effect of habitat loss on target species, especially those with a large home range size (e.g. yellow-bellied glider). However, the classified habitat map failed to accurately capture the spatial patterning (e.g. patch size and shape) of stands with a trace or sub-dominance of senescent trees. This outcome makes the reporting of the effects of habitat fragmentation more problematic, especially for species with a small home range size (e.g. feathertail glider). With further model refinement and validation, however, this moderateresolution approach offers an important, cost eff e c t i v e advancement in mapping the age of dry eucalypt forests in the region.
Resumo:
A new algorithm has been developed for smoothing the surfaces in finite element formulations of contact-impact. A key feature of this method is that the smoothing is done implicitly by constructing smooth signed distance functions for the bodies. These functions are then employed for the computation of the gap and other variables needed for implementation of contact-impact. The smoothed signed distance functions are constructed by a moving least-squares approximation with a polynomial basis. Results show that when nodes are placed on a surface, the surface can be reproduced with an error of about one per cent or less with either a quadratic or a linear basis. With a quadratic basis, the method exactly reproduces a circle or a sphere even for coarse meshes. Results are presented for contact problems involving the contact of circular bodies. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.