102 resultados para Sítio Monte Dourado I - PA
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) has been shown previously to be regulated by inhibitory G proteins. In the present study, we demonstrate inhibition of CFTR by alphaG(i2) and alphaG(i1), but not alphaG(0), in Xenopus oocytes. We further examined whether regulators of G protein signaling (RGS) proteins interfere with alphaG(i)-dependent inhibition of CFTR. Activation of CFTR by IBMX and forskolin was attenuated in the presence of alphaG(i2), indicating inhibition of CFTR by alphaG(i2) in Xenopus oocytes. Coexpression of the proteins RGS3 and RGS7 together with CFTR and alphaG(i2) partially recovered activation by IBMX/forskolin. 14-3-3, a protein that is known to interfere with RGS proteins, counteracted the effects of RGS3. These data demonstrate the regulation of CFTR by alphaG(i) in Xenopus oocytes. Because RGS proteins interfere with the G protein-dependent regulation of CFTR, this may offer new potential pathways for pharmacological intervention in cystic fibrosis. (C) 2001 Academic Press.
Resumo:
A quartz crystal microbalance modified by the attachment of silica particles derivatized with the aminopolycarboxylate ligand N-[(3-trimethoxysilyl)propyl]ethylenediamine-N,N',N'-triacetic acid has been employed to assess conditions under which mercury (II), lead (II), and silver (I) nitrates may be separated in aqueous solution. The separation protocol, which involved removal of Hg(II), as [HgI4](2-), and Pb(II) with H+ was successfully applied to a batchwise separation of the 3 metal ions.
Resumo:
GH is being used by elite athletes to enhance sporting performance. To examine the hypothesis that exogenous 22-kDa recombinant human GH (rhGH) administration could be detected through suppression of non-22-kDa isoforms of GH, we studied seventeen aerobically trained males (age, 26.9 +/- 1.5 yr) randomized to rhGH or placebo treatment (0.15 IU/kg/day for 1 week). Subjects were studied at rest and in response to exercise (cycle-ergometry at 65% of maximal work capacity for 20 min). Serum was assayed for total GH (Pharmacia IRMA and pituitary GH), 22-kDa GH (2 different 2-site monoclonal immunoassays), non-22-kDa GH (22-kDa GH-exclusion assay), 20-kDa GH, and immunofunctional GH. In the study, 3 h after the last dose of rhGH, total and 22-kDa GH concentrations were elevated, reflecting exogenous 22-kDa GH. Non-22-kDa and 20-kDa GH levels were suppressed. Regression of non-22-kDa or 20-kDa GH against total or 22-kDa GH produced clear separation of treatment groups. In identical exercise studies repeated between 24 and 96 h after cessation of treatment, the magnitude of the responses of all GH isoforms was suppressed (P < 0.01), but the relative proportions were similar to those before treatment. We conclude: 1) supraphysiological doses of rhGH in trained adult males suppressed exercise-stimulated endogenous circulating isoforms of GH for up to 4 days; 2) the dearest separation of treatment groups required the simultaneous presence of high exogenous 22-kDa GH and suppressed 20-kDa or non-22-kDa GH concentrations; and 3) these methods may prove useful in detecting rhGH abuse in athletes.
Resumo:
Circulating GH consists of multiple molecular isoforms, all derived from the one gene in nonpregnant humans. To assess the effect of a potent stimulus to pituitary secretion on GH isoforms, we studied 17 aerobically trained males (age, 26.9 +/- 1.5 yr) in a randomized, repeat measures study of rest vs. exercise. Exercise consisted of continuous cycle ergometry at approximately 80% of predetermined maximal oxygen uptake for 20 min. Serum was assayed for total, pituitary, 22-kDa, recombinant, non-22-kDa, 20-kDa, and immunofunctional GH. All isoforms increased during, peaked at the end, and declined after exercise. At peak exercise, 22-kDa GH was the predominant isoform. After exercise, the ratios of non-22 kDa/total GH and 20-kDa GH/total GH increased and those of recombinant/pituitary GH decreased. The disappearance half-times for pituitary GH and 20-kDa GH were significantly longer than those for all other isoforms. We conclude that 1) all molecular isoforms of GH measured increased with and peaked at the end of acute exercise, with 22-kBa GH constituting the major isoform in serum during exercise; and 2) the proportion of non-22-kDa isoforms increased after exercise due in part to slower disappearance rates of 20-kDa and perhaps other non-22-kDa GH isoforms. It remains to be determined whether the various biological actions of different GH isoforms impact on postexercise homeostasis.