95 resultados para Reversible Jump MCMC
Resumo:
Cardiovascular remodelling, defined as ventricular and vascular hypertrophy together with fibrosis, characterises hypertension following inhibition of the production of the endogenous vasodilator, nitric oxide (NO). This study has determined whether the cardiovascular remodelling following chronic NO synthase inhibition can e reversed by administration of the selective angiotensin II AT(1)-receptor antagonist, candesartan. Male Wistar rats were treated with L-nitroarginine methyl ester (L-NAME, 400 mg/l in drinking water) for eight weeks and with candesartan cilexetil (2 mg/kg/day by oral gavage) for the last four weeks. L-NAME-treated rats became hypertensive with systolic blood pressure increasing from 110 +/- 4 mmHg (control) to 170 +/- 10 mmHg. Rats developed left ventricular hypertrophy (control 1.70 +/- 0.06; L-NAME 2.10 +/- 0.04 mg/kg body wt) with markedly increased deposition of perivascular and interstitial collagen. Candesartan returned blood pressure, left ventricular weights and collagen deposition to control values. Echo cardiographic assessment showed concentric hypertrophy with an increased fractional shortening; this was reversed by candesartan treatment. Heart failure was not evident. In the isolated Langendorff heart, diastolic stiffness increased in L-NAME-treated rats while the rate of increase in pressure (+dP/dt) increased after eight weeks only; candesartan reduced collagen deposition and normalised +dP/dt. In isolated left ventricular papillary muscles, the potency (negative log EC50) of noradrenaline as a positive inotropic compound was unchanged, (control 6.56 +/- 0.14); maximal increase in force before ectopic beats was reduced from 5.0 +/- 0.4 mN to 2.0 +/- 0.2 mN. Noradrenaline potency as a vasoconstrictor in thoracic aortic rings was unchanged, but maximal contraction was markedly reduced from 25.2 +/- 2.0 mN to 3.0 +/- 0.3 mN; this was partially reversed by candesartan treatment. Thus, chronic inhibition of NO production with L-NAME induces hypertension, hypertrophy and fibrosis with increased toxicity and significant decreases in vascular responses to noradrenaline. These changes were at least partially reversible by treatment with candesartan, implying a significant role of AT(1)-receptors in L-NAME-induced cardiovascular changes.
Resumo:
A 48-year-old male patient with underlying CPT II enzyme deficiency is described. Emotional stress appeared to precipitate recurrent myalgias, rhabdomyolysis and reversible renal impairment over a 40-year period. Our search of the English literature indicates this to be the first time that the emotional stress has been documented to precipitate the CPT II syndrome. Although the pathogenesis of this syndrome has yet to be established, existing knowledge is briefly reviewed and the likely metabolic and neuroendocrine mechanisms which link emotional stress to muscle metabolism are examined. These mechanisms influence the extent of lipolysis or glycolysis that occurs during the process of muscle ATP generation. It is suggested that neuroendocrine and other stress related changes which favour lipolysis over glycolysis adversely effect muscle energy metabolism in patients whose mitochondria are deficient in CPT II enzyme. Possible treatment strategies are those that favour glycolysis over fatty acid metabolism and include a variety of ways of modulating sympathetic and parasympathetic tone. The use of carbohydrate supplementation P-blockers and anxiolytic agents is discussed.
Resumo:
Cone snails use venom containing a cocktail of peptides ('conopeptides') to capture their prey. Many of these peptides also target mammalian receptors, often with exquisite selectivity. Here we report the discovery of two new classes of conopeptides. One class targets alpha (1)-adrenoceptors (rho -TIA from the fish-hunting Conus tulipa), and the second class targets the neuronal noradrenaline transporter (chi -MrIA and chi -MrIB from the mollusk-hunting C. marmoreus). rho -TIA and chi -MrIA selectively modulate these important membrane-bound proteins. Both peptides act as reversible non-competitive inhibitors and provide alternative avenues for the identification of inhibitor drugs.
Resumo:
The first direct voltammetric response from a molybdenum enzyme under non-turnover conditions is reported. Cyclic voltammetry of dimethylsulfoxide reductase from Rhodobacter capsulatus reveals a reversible Mo-VI/V response at + 161 mV followed by a reversible Mo-V/IV response at -102 mV versus NHE at pH 8. The higher potential couple exhibits a pH dependence consistent with protonation upon reduction to the Mo-V state and we have determined the pK(a) for this semi-reduced species to be 9.0. The lower potential couple is pH independent within the range 5 < pH < 10. The optical spectrum of the Mo chromophore has been investigated with spectroelectrochemistry. At high potential, in its resting state, the enzyme exhibits a spectrum characteristic of the Mo-VI form. This changes significantly following bulk electrolysis (-400 mV versus NHE) at an optically transparent, indium-doped tin oxide working electrode, where a single visible electronic maximum at 632 nm is observed, which is comparable with spectra reported previously for the dithionite-reduced enzyme. This two-electron process is chemically reversible by reoxidizing the enzyme at the electrode in the absence of mediators or promoters. The activity of the enzyme has been established by observation of a catalytic current in the presence of DMSO at pH 8, where a sigmoidal (steady state) voltammogram is seen. Electronic supplementary material to this paper (Fig. S 1) can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-002-0374-y.
Resumo:
Given the importance of protein complexes as therapeutic targets, it is necessary to understand the physical chemistry of these interactions under the crowded conditions that exist in cells. We have used sedimentation equilibrium to quantify the enhancement of the reversible homodimerization of alpha-chymotrypsin by high concentrations of the osmolytes glucose, sucrose, and raffinose. In an attempt to rationalize the ostuolyte-mediated stabilization of the a-chymotrypsin homodimer, we have used models based on binding interactions (transfer-free energy analysis) and steric interactions (excluded volume theory) to predict the stabilization. Although transfer-free energy analysis predicts reasonably well the relatively small stabilization observed for complex formation between cytochrome c and cytochrome c peroxidase, as well as that between bobtail quail lysozyme and a monoclonal Fab fragment, it underestimates the sugar-mediated stabilization of the alpha-chymotrypsin dimer. Although predictions based on excluded volume theory overestimate the stabilization, it would seem that a major determinant in the observed stabilization of the a-chymotrypsin homodimer is the thermodynamic nonideality arising from molecular crowding by the three small sugars.
Resumo:
We introduce a model of computation based on read only memory (ROM), which allows us to compare the space-efficiency of reversible, error-free classical computation with reversible, error-free quantum computation. We show that a ROM-based quantum computer with one writable qubit is universal, whilst two writable bits are required for a universal classical ROM-based computer. We also comment on the time-efficiency advantages of quantum computation within this model.
Resumo:
We investigate the absorption and dispersion properties of a two-level atom driven by a polychromatic field. The driving field is composed of a strong resonant (carrier) frequency component and a large number of symmetrically detuned sideband fields (modulators). A rapid increase in the absorption at the central frequency and the collapse of the response of the system from multiple frequencies to a single frequency are predicted to occur when the Rabi frequency of the modulating fields is equal to the Rabi frequency of the carrier field. These are manifestations of the undressing or a disentanglement of the atomic and driving field states, that leads to a collapse of the atom to its ground state. Our calculation permits consideration of the question of the undressing of the driven atom by a multiple-modulated field and the predicted spectra offer a method of observing undressing. Moreover, we find that the absorption and dispersion spectra split into multiplets whose structures depend on the Rabi frequency of the modulating fields. The spectral features can jump between different resonance frequencies by changing the Rabi frequency of the modulating fields or their initial phases, which can have potential applications as a quantum frequency filter.
Resumo:
Acyl glucuronides are reactive metabolites of carboxylate drugs, able to undergo a number of reactions in vitro and in vivo, including isomerization via intramolecular rearrangement and covalent adduct formation with proteins. The intrinsic reactivity of a particular acyl glucuronide depends upon the chemical makeup of the drug moiety. The least reactive acyl glucuronide yet reported is valproic acid acyl glucuronide (VPA-G), which is the major metabolite of the antiepileptic agent valproic acid (VPA). In this study, we showed that both VPA-G and its rearrangement isomers (iso-VPA-G) interacted with bovine brain microtubular protein (MTP, comprised of 85% tubulin and 15% microtubule associated proteins {MAPs}). MTP was incubated with VPA, VPA-G and iso-VPA-G for 2 h at room temperature and pH 7.5 at various concentrations up to 4 mM. VPA-G and iso-VPA-G caused dose-dependent inhibition of assembly of MTP into microtubules, with 50% inhibition (IC50) values of 1.0 and 0.2 mM respectively, suggesting that iso-VPA-G has five times more inhibitory potential than VPA-G. VPA itself did not inhibit microtubule formation except at very high concentrations (greater than or equal to2 mM). Dialysis to remove unbound VPA-G and iso-VPA-G (prior to the assembly assay) diminished inhibition while not removing it. Comparison of covalent binding of VPA-G and iso-VPA-G (using [C-14]-labelled species) showed that adduct formation was much greater for iso-vTA-G. When [C-14]-iso-VPA-G was reacted with MTP in the presence of sodium cyanide (to stabilize glycation adducts), subsequent separation into tubulin and MAPs fractions by ion exchange chromatography revealed that 78 and 22% of the covalent binding occurred with the MAPs and tubulin fractions respectively. These experiments support the notion of both covalent and reversible binding playing parts in the inhibition of microtubule formation from MTP (though the acyl glucuronide of VPA is less important than its rearrangement isomers in this regard), and that both tubulin and (perhaps more importantly) MAPs form adducts with acyl glucuronides. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
This paper presents results on the simulation of the solid state sintering of copper wires using Monte Carlo techniques based on elements of lattice theory and cellular automata. The initial structure is superimposed onto a triangular, two-dimensional lattice, where each lattice site corresponds to either an atom or vacancy. The number of vacancies varies with the simulation temperature, while a cluster of vacancies is a pore. To simulate sintering, lattice sites are picked at random and reoriented in terms of an atomistic model governing mass transport. The probability that an atom has sufficient energy to jump to a vacant lattice site is related to the jump frequency, and hence the diffusion coefficient, while the probability that an atomic jump will be accepted is related to the change in energy of the system as a result of the jump, as determined by the change in the number of nearest neighbours. The jump frequency is also used to relate model time, measured in Monte Carlo Steps, to the actual sintering time. The model incorporates bulk, grain boundary and surface diffusion terms and includes vacancy annihilation on the grain boundaries. The predictions of the model were found to be consistent with experimental data, both in terms of the microstructural evolution and in terms of the sintering time. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Two different doses of Ross River virus (1111) were fed to Ochlerotatus vigilax (Skuse), the primary coastal vector in Australia; and blood engorged females were held at different temperatures up to 35 d. After ingesting 10(4.3) CCID50/Mosquito, mosquitoes reared at 18 and 25degreesC (and held at the same temperature) had higher body remnant and head and salivary gland titers than those held at 32degreesC, although infection rates were comparable. At 18, 25, and 32degreesC, respectively, virus was first detected in the salivary glands on days 3, 2, and 3. Based on a previously demonstrated 98.7% concordance between salivary gland infection and transmission, the extrinsic incubation periods were estimated as 5, 4, and 3 d, respectively, for these three temperatures. When Oc. vigilax reared at 18, 25, or 32degreesC were fed a lower dosage of 10(3.3) CCID50 RR/mosquito, and assayed after 7 d extrinsic incubation at these (or combinations of these) temperatures, infection rates and titers were similar. However, by 14 d, infection rates and titers of those reared and held at 18 and 32degreesC were significantly higher and lower, respectively. However, this process was reversible when the moderate 25degreesC was involved, and intermediate infection rates and titers resulted. These data indicate that for the strains of RR and Oc. vigilax used, rearing temperature is unimportant to vector competence in the field, and that ambient temperature variations will modulate or enhance detectable infection rates only after 7 d: extrinsic incubation. Because of the short duration of extrinsic incubation, however, this will do little to influence RR epidemiology, because by this time some Oc. vigilax could be seeking their third blood meal, the latter two being infectious.
Resumo:
The objective of this study was to determine the responsiveness, affinity constants and beta-adrenoceptor reserves for isoprenaline on the isolated aorta in the maturation of normotensive and hypertensive rats. The effects of a very slowly reversible antagonist, bromoacetylalprenololmenthane (BAAM), on the relaxant responses of the aortae of 5- and 14-week-old Wistar Kyoto normotensive rats (WKY) and spontaneously hypertensive rats (SHRs) to isoprenaline were determined. Five-week-old SHRs are pre-hypertensive and the aortic rings are less responsive to isoprenaline than age-matched WKY (pD(2) values: WKY, 8.40; SHRs, 8.03). Similar relaxant responses to forskolin were obtained on the aortae of 5- and 14-week-old WKY and SHRs. The K-A value for isoprenaline at the aortic beta(2)-adrenoceptors of the 5-week-old WKY was 2.1 x 10(-7) M, and similar values were obtained on the aortae of 5-week-old SHR and 14-week-old WKY and SHRs. In the maturation of the WKY aortae from 5 to 14 weeks, there was a reduction in the maximum response, a major loss of sensitivity and a loss of 2-adrenoceptor reserve for isoprenaline. On 5-week-old SHR aorta, the sensitivity to isoprenaline was 2.5-fold lower, and the beta(2)-adrenoceptor reserve was less than on age-matched WKY. In the development of hypertension on the SHR aorta from 5 to 14 weeks, there was a reduction in the maximum response to isoprenaline. At 14 weeks, the sensitivity and the 2-adrenoceptor reserve to isoprenaline were similar, but the maximum responses were lower on the SHR than WKY. As there are differences in pre-hypertensive SHR and age-matched WKY aortic responses to isoprenaline, it is no longer valid to consider that the loss of responsiveness to isoprenaline in hypertension is solely owing to the hypertension. There are no changes in affinity, but major changes in the sensitivity, maximum responses and aortic beta(2)-adrenoceptor reserves to isoprenaline in the maturation of normotensive and pre-hypertensive aortae.
Resumo:
Purinergic stimulation of airway epithelial cells induces Cl- secretion and modulates Na+ absorption by an unknown mechanism. To gain insight into this mechanism, we used a perfused micro-Ussing chamber to assess transepithelial voltage (V-te) and amiloride-sensitive short-circuit current (Isc-Amil) in mouse trachea. Exposure to apical ATP or UTP (each 100 mumol/l) caused a large initial increase in lumen negative V-te and I-sc corresponding to a transient Cl- secretion, while basolateral application of ATP/UTP induced only a small secretory response. Luminal, but not basolateral, application of nucleotides was followed by a sustained and reversible inhibition of Isc-Amil that was independent of extracellular Ca2+ or activation of protein kinase C and was not induced by carbachol (100 mumol/l) or the Ca2+ ionophore ionomycin (1 mumol/l). Removal of extracellular Cl- or exposure to 200 muM DIDS reduced UTP-mediated inhibition of Isc-Amil Substantially. The phospholipase inhibitor U73122 (10 mumol/l) and pertussis toxin (PTX 200 ng/ml) both attenuated UTP-induced Cl- secretion and inhibition of Isc-Amil. Taken together, these data imply a contribution of Cl- conductance and PTX-sensitive G proteins to nucleotide-dependent inhibition of the amiloride-sensitive Na+ current in the mouse trachea.
Resumo:
Complete small subunit ribosomal RNA gene (ssrDNA) and partial (D1-D3) large subunit ribosomal RNA gene (lsrDNA) sequences were used to estimate the phylogeny of the Digenea via maximum parsimony and Bayesian inference. Here we contribute 80 new ssrDNA and 124 new lsrDNA sequences. Fully complementary data sets of the two genes were assembled from newly generated and previously published sequences and comprised 163 digenean taxa representing 77 nominal families and seven aspidogastrean outgroup taxa representing three families. Analyses were conducted on the genes independently as well as combined and separate analyses including only the higher plagiorchiidan taxa were performed using a reduced-taxon alignment including additional characters that could not be otherwise unambiguously aligned. The combined data analyses yielded the most strongly supported results and differences between the two methods of analysis were primarily in their degree of resolution. The Bayesian analysis including all taxa and characters, and incorporating a model of nucleotide substitution (general-time-reversible with among-site rate heterogeneity), was considered the best estimate of the phylogeny and was used to evaluate their classification and evolution. In broad terms, the Digenea forms a dichotomy that is split between a lineage leading to the Brachylaimoidea, Diplostomoidea and Schistosomatoidea (collectively the Diplostomida nomen novum (nom. nov.)) and the remainder of the Digenea (the Plagiorchiida), in which the Bivesiculata nom. nov. and Transversotremata nom. nov. form the two most basal lineages, followed by the Hemiurata. The remainder of the Plagiorchiida forms a large number of independent lineages leading to the crown clade Xiphidiata nom. nov. that comprises the Allocreadioidea, Gorgoderoidea, Microphalloidea and Plagiorchioidea, which are united by the presence of a penetrating stylet in their cercariae. Although a majority of families and to a lesser degree, superfamilies are supported as currently defined, the traditional divisions of the Echinostomida, Plagiorchiida and Strigeida were found to comprise non-natural assemblages. Therefore, the membership of established higher taxa are emended, new taxa erected and a revised, phylogenetically based classification proposed and discussed in light of ontogeny, morphology and taxonomic history. (C) 2003 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Posterior leukoencephalopathy syndromes have been reported with hypertension, and immunosuppressive and chemotherapy agents. Cerebral vasospasm on MR angiography (MRA) has been noted in cases due to eclampsia. The authors report a case of Balint syndrome with irreversible posterior leukoencephalopathy on MRI following intrathecal methotrexate and cytarabine. Hypertension was not present. Diffuse, reversible arterial irregularities consistent with vasospasm were present on MRA during the acute illness.
Resumo:
Viewed on a hydrodynamic scale, flames in experiments are often thin so that they may be described as gasdynamic discontinuities separating the dense cold fresh mixture from the light hot burned products. The original model of a flame as a gasdynamic discontinuity was due to Darrieus and to Landau. In addition to the fluid dynamical equations, the model consists of a flame speed relation describing the evolution of the discontinuity surface, and jump conditions across the surface which relate the fluid variables on the two sides of the surface. The Darrieus-Landau model predicts, in contrast to observations, that a uniformly propagating planar flame is absolutely unstable and that the strength of the instability grows with increasing perturbation wavenumber so that there is no high-wavenumber cutoff of the instability. The model was modified by Markstein to exhibit a high-wavenumber cutoff if a phenomenological constant in the model has an appropriate sign. Both models are postulated, rather than derived from first principles, and both ignore the flame structure, which depends on chemical kinetics and transport processes within the flame. At present, there are two models which have been derived, rather than postulated, and which are valid in two non-overlapping regions of parameter space. Sivashinsky derived a generalization of the Darrieus-Landau model which is valid for Lewis numbers (ratio of thermal diffusivity to mass diffusivity of the deficient reaction component) bounded away from unity. Matalon & Matkowsky derived a model valid for Lewis numbers close to unity. Each model has its own advantages and disadvantages. Under appropriate conditions the Matalon-Matkowsky model exhibits a high-wavenumber cutoff of the Darrieus-Landau instability. However, since the Lewis numbers considered lie too close to unity, the Matalon-Matkowsky model does not capture the pulsating instability. The Sivashinsky model does capture the pulsating instability, but does not exhibit its high-wavenumber cutoff. In this paper, we derive a model consisting of a new flame speed relation and new jump conditions, which is valid for arbitrary Lewis numbers. It captures the pulsating instability and exhibits the high-wavenumber cutoff of all instabilities. The flame speed relation includes the effect of short wavelengths, not previously considered, which leads to stabilizing transverse surface diffusion terms.