80 resultados para Renal function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. A disintegrin and metalloproteinase with thrombospondin motifs 1, Adamts-1, is important for the development and function of the kidney. Mice lacking this protein present with renal lesions comprising enlarged calyces, and reduced cortex and medulla layers. Our current findings are consistent with the defect occurring due to a developmental dysgenesis. Methods. We generated Adamts-1 null mice, and further investigated their kidney phenotype in a time course study ranging from E18.5 to 12 months of age. Immunohistochemistry was used to assess the localization of type IV collagen, TGF-beta and F4/80-positive macrophages in the kidneys of Adcants-1 null mice compared to wild-type control animals. The expression of Adamts-1 mRNA was determined in metanephric kidney explants by in situ hybridization. Results. Adamts-1 null mice have a gross kidney defect. At day 18.5 of gestation, the Adcants-1 null kidney has a normal appearance but at birth when the kidney begins to function, the defect becomes evident. During development of the kidney Adamts-1 expression was specifically detected in the developing loops of Henle, as well as in the proximal and distal convoluted tubules. Expression was not detected in the ureter, ureteric bud or its derivatives as had been previously suggested. At 6 months and I year of age, the Adamts-1 null mice displayed interstitial fibrosis in the cortical and medullary regions of the kidney. At I year of age, the Adamts-1 null mice displayed mild interstitial matrix expansion associated with increased collagen type IV expression, without apparent tubular dilatation, compared to wild-type animals. Immunohistochemical analysis demonstrated TGF-beta protein localized to infiltrating macrophages and glomeruli of Adamts-1 null mice. Conclusions. Adamts-1 is required for the normal development of the kidney. The defect observed in its absence results from a dysgenic malformation affecting the medulla that becomes apparent at birth, once the kidneys start to function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CIC-5 is a chloride (Cl-) channel expressed in renal tubules and is critical for normal tubular function. Loss of function nonsense or missense mutations in CIC-5 are associated with Dent's disease, a condition in which patients present with low molecular weight (LMW) proteinuria (including albuminuria), hypercalciuria and nephrolithiasis. Several key studies in CIC-5 knockout mice have shown that the proteinuria results from defective tubular reabsorption of proteins. CIC-5 is typically regarded as an intracellular Cl- channel and thus the defect in this receptor-mediated uptake pathway was initially attributed to the failure of the early endosomes to acidify correctly. CIC-5 was postulated to play a key role in transporting the Cl- ions required to compensate for the movement of H+ during endosomal acidification. However, more recent studies suggest additional roles for CIC-5 in the endocytosis of albumin. CIC-5 is now known to be expressed at low levels at the cell surface and appears to be a key component in the assembly of the macromolecular complex involved in protein endocytosis. Furthermore, mutations in CIC-5 affect the trafficking of v-H+-ATPase and result in decreased expression of the albumin receptor megalin/cubulin. Thus, the expression of CIC-5 at the cell surface as well as its presence in endosomes appears to be essential for normal protein uptake by the renal proximal tubule. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renal cortical fibroblasts have key roles in mediating intercellular communication with neighboring/infiltrating cells and extracellular matrix (ECM) and maintenance of renal tissue architecture. They express a variety of cytokines, chemokines, growth factors and cell adhesion molecules, playing an active role in paracrine and autocrine interactions and regulating both fibrogenesis and the interstitial inflammatory response. They additionally have an endocrine function in the production of epoetin. Tubulointerstitial fibrosis, the common pathological consequence of renal injury, is characterized by the accumulation of extracellular matrix largely due to excessive production in parallel with reduced degradation, and activated fibroblasts characterized by a myofibroblastic phenotype. Fibroblasts in the kidney may derive from resident fibroblasts, from the circulating fibroblast population or from haemopoetic progenitor or stromal cells derived from the bone marrow. Cells exhibiting a myofibroblastic phenotype may derive from these sources and from tubular cells undergoing epithelial to mesenchymal transformation in response to renal injury. The number of interstitial myofibroblasts correlates closely with tubulointerstitial fibrosis and progressive renal failure. Hence inhibiting myofibroblast formation may be an effective strategy in attenuating the development of renal failure in kidney disease of diverse etiology. (c) 2005 Elsevier Ltd. All rights reserved.