112 resultados para Regulated Transport
Resumo:
Most mammalian cells have in their plasma membrane at least two types of lipid microdomains, non-invaginated lipid rafts and caveolae. Glycosylphosphatidylinositol (GPI)-anchored proteins constitute a class of proteins that are enriched in rafts but not caveolae at steady state. We have analyzed the effects of abolishing GPI biosynthesis on rafts, caveolae, and cholesterol levels. GPI-deficient cells were obtained by screening for resistance to the pore-forming toxin aerolysin, which uses this class of proteins as receptors. Despite the absence of GPI-anchored proteins, mutant cells still contained lipid rafts, indicating that GPI-anchored proteins are not crucial structural elements of these domains. Interestingly, the caveolae-specific membrane proteins, caveolin-1 and 2, were up-regulated in GPI-deficient cells, in contrast to flotillin-I and GM1, which were expressed at normal levels. Additionally, the number of surface caveolae was increased. This effect was specific since recovery of GPI biosynthesis by gene recomplementation restored caveolin expression and the number of surface caveolae to wild type levels. The inverse correlation between the expression of GPI-anchored proteins and caveolin-1 was confirmed by the observation that overexpression of caveolin-1 in wild type cells led to a decrease in the expression of GPI-anchored proteins. In cells lacking caveolae, the absence of GPI-anchored proteins caused an increase in cholesterol levels, suggesting a possible role of GPI-anchored proteins in cholesterol homeostasis, which in some cells, such as Chinese hamster ovary cells, can be compensated by caveolin up-regulation.
Resumo:
Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 mum nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 mum nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 mum) significantly inhibited basal and insulin-stimulated glucose uptake in adi. pocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 muM nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 muM nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degreesC. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.
Resumo:
We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-LI adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM), resulted in >95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA/AM.. While the ionophores A23187 or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 degreesC, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/cahnodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself.
Resumo:
Sec1p-like/Munc-18 (SM) proteins bind to t-SNAREs and inhibit ternary complex formation. Paradoxically, the absence of SM proteins does not result in constitutive membrane fusion, Here, we show that in yeast cells lacking the SM protein Vps45p, the t-SNARE Tlg2p is down-regulated, to undetectable levels, by rapid proteasomal degradation. In the absence of Vps45p, Tlg2p can be stabilized through abolition of proteasome activity. Surprisingly, the stabilized Tlg2p was targeted to the correct intracellular location. However, the stabilized Tlg2p is non-functional and unable to bind its cognate SNARE binding partners, Tlg1p and Vti1p, in the absence of Vps45p, A truncation mutant lacking the first 230 residues of Tlg2p no longer bound Vps45p but was able to form complexes with Tlg1p and Vti1p in the absence of the SM protein. These data provide us with two valuable insights into the function of SM proteins. First, SM proteins act as chaperone-like molecules for their cognate t-SNAREs, Secondly, SM proteins play an essential role in the activation process allowing their cognate t-SNARE to participate in ternary complex formation.
Resumo:
GLUT4 is a mammalian facilitative glucose transporter that is highly expressed in adipose tissue and striated muscle. In response to insulin, GLUT4 moves from intracellular storage areas to the plasma membrane, thus increasing cellular glucose uptake. While the verification of this 'translocation hypothesis' (Cushman SW. Wardzala LJ. J Biol Chem 1980;255: 4758-4762 and Suzuki K, Kono T. Proc Natl Acad Sci 1980;77: 2542-2545) has increased our understanding of insulin-regulated glucose transport, a number of fundamental questions remain unanswered. Where is GLUT4 stored within the basal cell? How does GLUT4 move to the cell surface and what mechanism does insulin employ to accelerate this process) Ultimately we require a convergence of trafficking studies with research in signal transduction. However, despite more than 30 years of intensive research we have still not reached this point. The problem is complex, involving at least two separate signal transduction pathways which feed into what appears to be a very dynamic sorting process. Below we discuss some of these complexities and highlight new data that are bringing us closer to the resolution of these questions.
Resumo:
Direct comparisons between photosynthetic O-2 evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400-600 mumol photons m(-2) s(-1). O-2 exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((Fm'-Ft)/Fm') decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0-300 mumol photons m(-2) s(-1)), there was a significant correlation between O-2 evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O-2 evolution tended towards an asymptote. However at high irradiance levels (600-1200 mumol photons m-(2) s(-1)) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO3-], [NH4+] and [HPO42-] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O-2 evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O-2, i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances.
Resumo:
Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.
Resumo:
Four animal models were used to quantitatively evaluate hepatic alterations in this study: (1) a carbon tetrachloride control group (phenobarbital treatment only), (2) a CCl4-treated group (phenobarbital with CCl4 treatment), (3) an alcohol-treated group (liquid diet with alcohol treatment), and (4) a pair-fed alcohol control group (liquid diet only). At the end of induction, single-pass perfused livers were used to conduct multiple indicator dilution (MID) studies. Hepatic spaces (vascular space, extravascular albumin space, extravascular sucrose space, and cellular distribution volume) and water hepatocyte permeability/surface area product were estimated from nonlinear regression of outflow concentration versus time profile data. The hepatic extraction ratio of H-3-taurocholate was determined by the nonparametric moments method. Livers were then dissected for histopathologic analyses (e.g., fibrosis index, number of fenestrae). In these 4 models, CCl4-treated rats were found to have the smallest vascular space, extravascular albumin space, H-3-taurocholate extraction, and water hepatocyte permeability/surface area product but the largest extravascular sucrose space and cellular distribution volume. In addition, a linear relationship was found to exist between histopathologic analyses (fibrosis index or number of fenestrae) and hepatic spaces. The hepatic extraction ratio of H-3-taurocholate and water hepatocyte permeability/surface area product also correlated to the severity of fibrosis as defined by the fibrosis index. In conclusion, the multiple indicator dilution data obtained from the in situ perfused rat liver can be directly related to histopathologic analyses.
Resumo:
Adipose tissue is a highly active endocrine organ secreting a range of soluble products with both local and distant actions. These hormones have important roles in metabolism, reproduction, cardiovascular function and immunity. It is now evident that adipose endocrine function directly influences other organ systems, including the brain, liver and skeletal muscle. The endocrine function of adipose tissue is significantly regulated by nutritional status, and both are inextricably linked to the energy storage role of adipose tissue. This chapter highlights the endocrinology of adipose tissue by concentrating on functional aspects of the secreted products. The data of particular relevance to humans are highlighted, and areas in need of future research are suggested.
Resumo:
It is shown that the observed difference in sediment transporting efficiency by the swash uprush, compared with the downrush, could be mainly due to greater bed shear stress for a given velocity in the more abruptly accelerated uprush. The bed shear stress generated by an arbitrary free stream velocity time series is modelled in terms of usual wave boundary layer models plus a phase lead (phi(tau) of the bed shear stress compared with the free stream velocity at the peak frequency. With this approach, the total transport amounts in uprush and downrush can be modelled satisfactorily with the same sediment transport formula, without the need for different uprush and downrush coefficients. While the adaptation of sediment transport formulae from steady flow can thus lead to the right total amounts of sediment moved by this method, the timing of the instantaneous sediment transport rates are probably not accurately modelled due to the highly unsteady nature of the swash and the presence of pre-suspended sediment in the uprush. Nevertheless, the proposed method is a useful intermediate step before we have a complete understanding of sediment transport under very rapid accelerations and of the relative contribution of pre-suspended sediment to the onshore sediment transport in swash zones. (C) 2002 Published by Elsevier Science B.V.
Resumo:
A simple method is provided for calculating transport rates of not too fine (d(50) greater than or equal to 0.20 mm) sand under sheet flow conditions. The method consists of a Meyer-Peter-type transport formula operating on a time-varying Shields parameter, which accounts for both acceleration-asymmetry and boundary layer streaming. While velocity moment formulae, e.g.., = Constant x calibrated against U-tube measurements, fail spectacularly under some real waves (Ribberink, J.S., Dohmen-Janssen, C.M., Hanes, D.M., McLean, S.R., Vincent, C., 2000. Near-bed sand transport mechanisms under waves. Proc. 27th Int. Conf. Coastal Engineering, Sydney, ASCE, New York, pp. 3263-3276, Fig. 12), the new method predicts the real wave observations equally well. The reason that the velocity moment formulae fail under these waves is partly the presence of boundary layer streaming and partly the saw-tooth asymmetry, i.e., the front of the waves being steeper than the back. Waves with saw-tooth asymmetry may generate a net landward sediment transport even if = 0, because of the more abrupt acceleration under the steep front. More abrupt accelerations are associated with thinner boundary layers and greater pressure gradients for a given velocity magnitude. The two real wave effects are incorporated in a model of the form Q(s)(t) = Q(s)[theta(t)] rather than Q(S)(t) = Q(S)[u(infinity)(t)], i.e., by expressing the transport rate in terms of an instantaneous Shields parameter rather than in terms of the free stream velocity, and accounting for both streaming and accelerations in the 0(t) calculations. The instantaneous friction velocities u(*)(t) and subsequently theta(t) are calculated as follows. Firstly, a linear filter incorporating the grain roughness friction factor f(2.5) and a phase angle phi(tau) is applied to u(infinity)(t). This delivers u(*)(t) which is used to calculate an instantaneous grain roughness Shields parameter theta(2.5)(t). Secondly, a constant bed shear stress is added which corresponds to the streaming related bed shear stress -rho ($) over bar((u) over tilde(w) over tilde)(infinity) . The method can be applied to any u(infinity)(t) time series, but further experimental validation is recommended before application to conditions that differ strongly from the ones considered below. The method is not recommended for rippled beds or for sheet flow with typical prototype wave periods and d(50) < 0.20 turn. In such scenarios, time lags related to vertical sediment movement become important, and these are not considered by the present model. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli. (C) 2002 Elsevier Science B.V. All rights reserved.