113 resultados para RECEPTOR-BETA GENE
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with a variety of growth factors and cytokines. Regulation of syndecan-1 and -2 gene expression was investigated in human periodontal ligament fibroblasts (PDLF), osteoblasts (OB) and gingival fibroblasts (GF), in response to platelet-derived growth factor (PDGF-BB), transforming growth factor (TGF-beta(1)), and interleukin (IL-1beta) by Northern blot analyses. We also compared the effect of PDGF-BB and TGF-beta(1), separately and in combination, in the prolonged presence of IL-1beta on the expression of both syndecan genes. The results demonstrated that the three cell lines regulated the expression of syndecan-1 and -2 in response to growth factors and cytokines in different manners. These cell lines increased syndecan-1 mRNA levels in response to either PDGF-BB or TGF-beta(1) and decreased levels in response to IL-1beta. The effect of IL-1beta on syndecan-1 mRNA synthesis was partially reversed after adding PDGF-BB and TGF-beta(1), separately or in combination, in the presence of IL-1beta. In contrast, syndecan-2 mRNA level was markedly upregulated in response to either TGF-beta(1) or IL-1beta in OB when compared with the other two cell lines. However, the stimulatory effect of TGF-beta(1) on syndecan-2 mRNA production in OB was abolished in the prolonged presence of IL-1beta. These findings lend support to the notion that syndecan-1 and syndecan-2 have distinct functions which correlate with their source and functions within the periodontium.
Resumo:
Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-l/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines. (C) 2002 Lippincott Williams Wilkins.
Resumo:
OBJECTIVES The goal of this study was to determine whether the cardiostimulant effects of the endogenous beta(1)-adrenergic receptor (AR) agonist, (-)-norepinephrine are modified by polymorphic (Serine49Glycine [Ser49Gly], Glycine389Arginine [Gly389Arg]) variants of beta(1)-ARs in the nonfailing adult human heart. BACKGROUND Human heart beta(1)-ARs perform a crucial role in mediating the cardiostimulant effects of (-)-norepinephrine. An understanding of the significance of Ser49Gly and Gly389Arg polymorphisms in the human heart is beginning to emerge, but not as yet in adult patients who have coronary artery disease (CAD). METHODS The potency and maximal effects of (-)-norepinephrine at beta(1)-ARs (in the presence of beta(2)-AR blockade with 50 nM ICI 118,551 [erythro-DL-1(7-methylindan-4-yloxy)-3-isopropylamino-butan-2-ol]) for changes in contractile force and shortening of contractile cycle duration were determined in human right atrium in vitro from 87 patients undergoing coronary artery bypass grafting who were taking beta-blockers before surgery. A smaller sample of patients (n = 20) not taking beta-blockers was also investigated. Genotyping for two beta(1)-AR polymorphisms (Ser49Gly and Gly389Arg) was determined from a sample of blood taken at the time of surgery. RESULTS (-)-Norepinephrine caused concentration-dependent increases in contractile force and reductions in time to reach peak force and time to reach 50% relaxation. There were no differences in the potency or maximal effects of (-)-norepinephrine in the right atrium from patients with different Ser49Gly and Gly389Arg polymorphisms. CONCLUSIONS The cardiostimulant effects of (-)-norepinephrine at beta(1)-ARs were conserved across Ser49Gly and Gly389Arg polymorphisms in the right atrium of nonfailing hearts from patients with CAD managed with or without beta-blockers. (C) 2002 by the American College of Cardiology Foundation.
Resumo:
Migraine is a common complex disorder, currently classified into two main subtypes, migraine with aura (MA) and migraine without aura (MO). The strong preponderance of females to males suggests an X-linked genetic component. Recent studies have identified an X chromosomal susceptibility region (Xq24-q28) in two typical migraine pedigrees. This region harbours a potential candidate gene for the disorder, the serotonin receptor 2C (5-HT2C) gene. This study involved a linkage and association approach to investigate two single nucleotide variants in the 5-HT2C gene. In addition, exonic coding regions of the 5-HT2C gene were also sequenced for mutations in X-linked migraine pedigrees. Results of this study did not detect any linkage or association, and no disease causing mutations were identified. Hence, results for this study do not support a significant role of the 5-HT2C gene in migraine predisposition. (C) 2003 Wiley-Liss, Inc.
Resumo:
We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.
Resumo:
Objectives: To identify potential molecular genetic determinants of cardiovascular ischemic tolerance in wild-type and transgenic hearts overexpressing A(1) adenosine receptors (A(1)ARs). Methods: cDNA microarrays were used to explore expression of 1824 genes ill wild-type hearts and ischemia-tolerant mouse hearts overexpressing A(1)ARs. Results: Overexpression of A(1)ARs reduced post-ischemic contractile dysfunction, limited arrhythmogenesis, and reduced necrosis by similar to80% in hearts subjected to 30 min global ischemia 60 mill reperfusion. Cardioprotection was abrogated by acute A(1)AR antagonism, and only a small number (19) of genes were modified by A(1)AR overexpression in normoxic hearts. Ischemia-reperfusion significantly altered expression of 75 genes in wild-type hearts (14 induced, 61 down-regulated), including genes for metabolic enzymes, structural/motility proteins, cell signaling proteins, defense/growth proteins, and regulators of transcription and translation. A(1)AR overexpression reversed the majority of gene down-regulation whereas gene induction was generally unaltered. Additionally, genes involved in cell defence, signaling and gene expression were selectively modified by ischemia in transgenic hearts (33 induced, 10 down-regulated), possibly contributing to the protected phenotype. Real-time PCR verified changes in nine selected genes, revealing concordance with array data. Transcription of the A(1)AR gene was also modestly reduced post-ischemia, consistent with impaired functional sensitivity to A(1)AR stimulation Conclusions: Data are presented regarding the early post-ischemic gene profile of intact heart. Reduced A(1)AR transcription is observed which may contribute to poor outcome from ischemia. A(1)AR overexpression selectively modifies post-ischemic gene expression, potentially contributing to ischemic-tolerance. (C) 2003 European Society of Cardiology. Published by Elsevier Science B.V. All rights reserved.
Etr1-1 gene expression alters regeneration patterns in transgenic lettuce stimulating root formation
Resumo:
We have evaluated the transformation efficiency of two lettuce ( Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens- mediated gene transfer. Six- day- old cotyledons were co- cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the beta- glucuronidase gene ( GUS) under the control of the cauliflower mosaic virus 35S promoter ( CaMV 35S), while the second construct contained the ethylene mutant receptor etr1- 1, which confers ethylene insensitivity, under the control of a leaf senescence- specific promoter ( sag12). Tissues co- cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co- cultivated with Agrobacteria carrying the etr1- 1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained ( 2.86%). These results indicate that the ethylene insensitivity conferred by the etr1- 1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.
Resumo:
Kennedy's disease (spinobulbar muscular atrophy) is an X-linked form of motor neuron disease affecting adult males carrying a CAG trinucleotide repeat expansion within the androgen receptor gene. While expression of Kennedy's disease is thought to be confined to males carrying the causative mutation, subclinical manifestations have been reported in a few female carriers of the disease. The reasons that females are protected from the disease are not clear, especially given that all other diseases caused by CAG expansions display dominant expression. In the current study, we report the identification of a heterozygote female carrying the Kennedy's disease mutation who was clinically diagnosed with motor neuron disease. We describe analysis of CAG repeat number in this individual as well as 33 relatives within the pedigree, including two male carriers of the Kennedy's mutation. The female heterozygote carried one expanded allele of the androgen receptor gene with CAG repeats numbering in the Kennedy's disease range (44 CAGs), with the normal allele numbering in the upper-normal range (28 CAGs). The subject has two sons, one of whom carries the mutant allele of the gene and has been clinically diagnosed with Kennedy's disease, whilst the other son carries the second allele of the gene with CAGs numbering in the upper normal range and displays a normal phenotype. This coexistence of motor neuron disease and the presence of one expanded allele and one allele at the upper limit of the normal range may be a coincidence. However, we hypothesize that the expression of the Kennedy's disease mutation combined with a second allele with a large but normal CAG repeat sequence may have contributed to the motor neuron degeneration displayed in the heterozygote female and discuss the possible reasons for phenotypic expression in particular individuals.
Resumo:
The structures of acetylcholine-binding protein ( AChBP) and nicotinic acetylcholine receptor ( nAChR) homology models have been used to interpret data from mutagenesis experiments at the nAChR. However, little is known about AChBP-derived structures as predictive tools. Molecular surface analysis of nAChR models has revealed a conserved cleft as the likely binding site for the 4/7 alpha-conotoxins. Here, we used an alpha 3 beta 2 model to identify beta 2 subunit residues in this cleft and investigated their influence on the binding of alpha-conotoxins MII, PnIA, and GID to the alpha 3 beta 2 nAChR by two-electrode voltage clamp analysis. Although a beta 2-L119Q mutation strongly reduced the affinity of all three alpha-conotoxins, beta 2-F117A, beta 2-V109A, and beta 2-V109G mutations selectively enhanced the binding of MII and GID. An increased activity of alpha-conotoxins GID and MII was also observed when the beta 2-F117A mutant was combined with the alpha 4 instead of the alpha 3 subunit. Investigation of A10L-PnIA indicated that high affinity binding to beta 2-F117A, beta 2-V109A, and beta 2-V109G mutants was conferred by amino acids with a long side chain in position 10 (PnIA numbering). Docking simulations of 4/7 alpha-conotoxin binding to the alpha 3 beta 2 model supported a direct interaction between mutated nAChR residues and alpha-conotoxin residues 6, 7, and 10. Taken together, these data provide evidence that the beta subunit contributes to alpha-conotoxin binding and selectivity and demonstrate that a small cleft leading to the agonist binding site is targeted by alpha-conotoxins to block the nAChR.
Resumo:
Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.
Resumo:
Matrix accumulation in the renal tubulointerstitium is predictive of a progressive decline in renal function. Transforming growth factor-beta(1) (TGF-beta(1)) and, more recently, connective tissue growth factor (CTGF) are recognized to play key roles in mediating the fibrogenic response, independently of the primary renal insult. Further definition of the independent and interrelated effects of CTGF and TGF-beta(1) is critical for the development of effective antifibrotic strategies. CTGF (20 ng/ml) induced fibronectin and collagen IV secretion in primary cultures of human proximal tubule cells (PTC) and cortical fibroblasts (CF) compared with control values (P < 0.005 in all cases). This effect was inhibited by neutralizing antibodies to either TGF-beta or to the TGF-beta type II receptor (TbetaRII). TGF-beta(1) induced a greater increase in fibronectin and collagen IV secretion in both PTC (P < 0.01) and CF (P < 0.01) compared with that observed with CTGF alone. The combination of TGF-beta(1) and CTGF was additive in their effects on both PTC and CF fibronectin and collagen IV secretion. TGF-beta(1) (2 ng/ml) stimulated CTGF mRNA expression within 30 min, which was sustained for up to 24 h, with a consequent increase in CTGF protein (P < 0.05), whereas CTGF had no effect on TGF-beta(1) mRNA or protein expression. TGF-beta(1) (2 ng/ml) induced phosphorylated (p)Smad-2 within 15 min, which was sustained for up to 24 h. CTGF had a delayed effect on increasing pSmad-2 expression, which was evident at 24 h. In conclusion, this study has demonstrated the key dependence of the fibrogenic actions of CTGF on TGF-beta. It has further uniquely demonstrated that CTGF requires TGF-beta, signaling through the TbetaRII in both PTCs and CFs, to exert its fibrogenic response in this in vitro model.
Resumo:
The progesterone receptor (PR) is a candidate gene for the development of endometriosis, a complex disease with strong hormonal features, common in women of reproductive age. We typed the 306 base pair Alu insertion (AluIns) polymorphism in intron G of PR in 101 individuals, estimated linkage disequilibrium (LD) between five single-nucleotide polymorphisms (SNPs) across the PR locus in 980 Australian triads (endometriosis case and two parents) and used transmission disequilibrium testing (TDT) for association with endometriosis. The five SNPs showed strong pairwise LD, and the AluIns was highly correlated with proximal SNPs rs1042839 ({Delta}2 = 0.877, D9 = 1.00, P < 0.0001) and rs500760 ({Delta}2 = 0.438, D9 = 0.942, P < 0.0001). TDT showed weak evidence of allelic association between endometriosis and rs500760 (P = 0.027) but not in the expected direction. We identified a common susceptibility haplotype GGGCA across the five SNPs (P = 0.0167) in the whole sample, but likelihood ratio testing of haplotype transmission and non-transmission of the AluIns and flanking SNPs showed no significant pattern. Further, analysis of our results pooled with those from two previous studies suggested that neither the T2 allele of the AluIns nor the T1/T2 genotype was associated with endometriosis.
Resumo:
Pro- and anti-fibrotic cytokine gene polymorphisms may affect expression of idiopathic pulmonary fibrosis (IPF). The aims of the present case-control study were to examine polymorphisms in the IL-6, transforming growth factor (TGF)-beta1, tumour necrosis factor (TNF)-alpha and interleukin-1 (IL-1)Ra genes in patients with IPF (n=22)-compared to healthy controls (n=140). Genotyping was performed on DNA extracted from peripheral blood lymphocytes, using polymerase chain reaction-restriction fragment length polymorphism with gene polymorphisms determined according to-published techniques. The following sites were examined: (i) IL-1Ra*1-5 (86 bp variable tandem repeat intron 2), (ii) IL-6 (-174G>C), (iii) TNF-alpha (-308G>A) and (iv) TGF-beta1 (Arg25Pro). The TNF-alpha (-308 A) allele was over-represented in the IPF (p(corr)=0.004) group compared to controls. Risk of IPF was significant for heterozygotes for: (i) the TNF-alpha (-308 A) allele (A/G) (odds ratio (OR) 2.9; 95% confidence interval (CI) 1.2-7.2; P=0.02), (ii) homozygotes (A/A) (OR 13.9; 95%CI 1.2-160; P=0.04) and (iii) carriage of the allele (A/A+A/G) (OR 4; 95%CI 1.6-10.2; P=0.003). The distribution of alleles and genotypes for IL-6, TGF-beta1 and IL-1Ra between the two groups was not significantly different. This is the third study to independently confirm that there is a significant association of the TNF-alpha (-308 A) allele with IPF. Further research is needed to assess the utility of cytokine gene polymorphisms as markers of disease-susceptibility.