77 resultados para Plackett-burman designs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is presented for calculating the currents and winding patterns required to design independent zonal and tesseral shim coils for magnetic resonance imaging. Both actively shielded and unshielded configurations are considered, and the region of interest can be located asymmetrically with respect to the coil's length. Streamline, target-field and Fourier-series methods are utilized. The desired target-field is specified at two cylindrical radii, on and inside a circular conducting cylinder of length 2L and radius a. The specification is over some asymmetric portion pL < z < qL of the coil's length (-1 < p < q < 1). Arbitrary functions are used in the outer sections, -L < z < pL and qL < z < L, to ensure continuity of the magnetic field across the entire length of the coil. The entire field is then periodically extended as a half-range cosine Fourier series about either end of the coil. The resultant Fourier coefficients are then substituted into the Fourier-series expressions for the internal and external magnetic fields, and current densities and stream functions on both the primary coil and shield. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis and shielding analysis on field calculations from a ZX shim coil indicate that example designs and theory are well matched.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper continues the development of a new approach for the design of shim and gradient coils, used in magnetic resonance imaging (MRI) applications. A cylindrical primary coil of radius a and length 2L is placed inside a co-axial shield cylinder of radius b. An active shielding strategy is used to create a desired target field at an arbitrarily specified (cylindrical) location within the primary coil, and to annul the field at a certain radius outside the shield. The form of the interior target field may be chosen arbitrarily by the designer, although zonal and tesseral harmonics are typically used in MRI applications. The method presented here designs coil windings on both the primary and shielding cylinders, to produce fields that conform to the specified interior target field and the annulled field exterior to the shield. An additional feature of the method presented here is that the target field inside the primary coil is matched at two different radii, to improve overall accuracy. The method is illustrated by designing several shielded shim coils, for creating higher order tesseral fields located asymmetrically within the coil. The simpler case of pure zonal fields is discussed separately and applied to the design of some higher order shielded coils.