181 resultados para Phylogeny of Hyalidae
Resumo:
All life-history stages of the Australian Podonominae (Chironomidae) genus Archaeochlus Brundin are revised, providing evidence for recognition of a separate clade, named here as Austrochlus Cranston. Based on molecular and morphological evidence, the clade contains two additional species: Austrochlus parabrundini Cranston, Edward and Cook sp. n. is described from Western Australia where its granite outcrop seepage habitat and geographical range is almost identical to that of the type species Austrochlus brundini Cranston, Edward and Colless (n. comb); Austrochlus centralaustralis Cranston, Edward and Cook sp. n. is described from ephemeral seepage/flows in the MacDonnell and James Ranges of central Australia. Molecular studies reported here confirm species distinctions, relationships to African taxa, and basal relationships within the Chironomidae. Modelled distributions provide evidence for range restriction by seasonal rainfall patterns.
Resumo:
Our current, still limited, understanding of the comparative biology and evolution of polydnaviruses (PDVs) is reviewed, especially in the context of the possible origins of these parasitoid viruses and of their coevolution with carrier wasps. A hypothetical scenario of evolution of PDVs from ascovirus (or ascovirus-like) ancestors is presented, with examples of apparent extant transitional forms. PDVs appear, in the case of bracoviruses, to show phylogenetic relationships that mirror those of their wasp carriers: with ichno-viruses, the picture is less clear. Ongoing sequencing studies of entire PDV genomes from diverse wasp species are likely to greatly contribute to our understanding of PDV evolution. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Vascular casts of 3 species of Chondrichthyes, 1 of Dipnoi, 1 of Chondrostei and 14 species of the Teleostei were examined by light and scanning electron microscopy in order to give a qualitative and quantitative analysis of interarterial anastomoses (iaas) that indicate the presence (or absence) of a secondary vascular system (SVS). Anastomoses were found to originate from a variety of different primary blood vessels, many of which have not been previously identified as giving rise to secondary vessels. Segmental arteries derived from the dorsal aorta and supplying body musculature were major sites of origin of the SVS, although there was considerable variation in where, in the hierarchy of arterial branching, the anastomoses occurred. The degree of investment in a SVS was species specific, with more active species having a higher degree of secondary vascularisation. This difference was quantified using an absolute count of iaas between Anguilla reinhardtii and Trachinotus baillonii. A range of general features of the SVS is also described. No evidence of iaas was found on the coeliac, mesenteric or renal circulation in any species. Evidence of iaas was lacking in the dipnoan and chondrichthyan species examined, suggesting that a SVS is restricted to Actinopterygii. The presence and distribution of a SVS does not appear to be exclusively linked to phylogenetic position, but rather to the physiological adaptation of the species.
Resumo:
The Australian fossil record shows that from ca. 25 Myr ago, the aseasonal-wet biome (rainforest and wet heath) gave way to the unique Australian sclerophyll biomes dominated by eucalypts, acacias and casuarinas. This transition coincided with tectonic isolation of Australia, leading to cooler, drier, more seasonal climates. From 3 Myr ago, aridification caused rapid opening of the central Australian and zone. Molecular phylogenies with dated nodes have provided new perspectives on how these events could have affected the evolution of the Australian flora. During the Mid-Cenozoic (25-10 Myr ago) period of climatic change, there were rapid radiations in sclerophyll taxa, such as Banksia, eucalypts, pea-flowered legumes and Allocasuarina. At the same time, taxa restricted to the aseasonal-wet biome (Nothofagus, Podocarpaceae and Araucariaceae) did not radiate or were depleted by extinction. During the Pliocene aridification, two Eremean biome taxa (Lepidium and Chenopodiaceae) radiated rapidly after dispersing into Australia from overseas. It is clear that the biomes have different histories. Lineages in the aseasonal-wet biome are species poor, with sister taxa that are species rich, either outside Australia or in the sclerophyll biomes. In conjunction with the fossil record, this indicates depletion of the Australian aseasonal-wet biome from the Mid-Cenozoic. In the sclerophyll biomes, there have been multiple exchanges between the southwest and southeast, rather than single large endemic radiations after a vicariance event. There is need for rigorous molecular phylogenetic studies so that additional questions can be addressed, such as how interactions between biomes may have driven the speciation process during radiations. New studies should include the hither-to neglected monsoonal tropics.
Resumo:
Butterflyfish are colourful, pan-tropical coastal fish that are important and distinctive members of coral reef communities. A successful systematic scheme and a robust phylogeny is considered essential in understanding further their biogeography and ecology, although recent cladistic treatments of butterflyfish phylogeny, based on soft tissue and bone morphology and coded at the generic and subgeneric levels, differ in character coding and subsequently tree topology. This study provides an independent test of the morphologically based hypotheses, using molecular systematic data from two partial mitochondrial gene fragments, cytochrome b (cytb) and small subunit rRNA (rrnS), for 52 ingroup chaetodontids and seven pomacanthids used to root the molecular trees. Individual gene trees were largely compatible and a combined molecular phylogeny, inferred from Bayesian analysis, was used to test alternative hypotheses suggested by morphological analyses. The tree was also used to map the latest morphological matrix in order to evaluate potential synapomorphies for various nodes defining butterflyfish interrelationships. A clade comprised of Chelmon and Coradion was sister group to other chaetodontids. Heniochus and Hemitaurichthys were each resolved as monophyletic groups, and as sister taxa Of the taxa sampled, Prognothodes was resolved as the sister genus to Chaeotodon. Of the ten Chaetodon subgenera sampled, all were monophyletic but their interrelationships differed significantly from that inferred from morphological characters. Lepidochaetodon was the most basal subgenus followed by Exornator and the remaining subgenera. Molecular data support the sister group relationship between Corallochaetodon and Citharoedus suggested by morphology, but major differences occur among the remaining more derived taxa. Chaetodon trifascialis and C. oligacanthus were resolved as sister taxa adding weight to the inclusion of the latter in C. Megaprotodon. Of those pairs of taxa known to hybridize and sampled with molecular data, all were closely related phylogenetically, except those hybrids known to occur in the Rabdophorus subgenus. Two base changes separated C. pelewensis from C. paucifasciatus which have been regarded previously as a single species. Cytb provided greater resolution than rrnS and will likely provide additional resolution with greater taxon sampling.
Resumo:
An analysis of the relationships of the major arthropod groups Was undertaken using mitochondrial genome data to examine the hypotheses that Hexapoda is polyphyletic and that Collembola is more closely related to branchiopod crustaceans than insects. We sought to examine the sensitivity of this relationship to outgroup choice, data treatment. gene choice and optimality criteria used in the phylogenetic analysis of mitochondrial genome data. Additionally we sequenced the mitochondrial genome of ail archaeognathan, Nesomachilis australica. to improve taxon selection in the apterygote insects, a group poorly represented in previous mitochondrial phylogenies. The sister group of the Collembola was rarely resolved in our analyses with a significant level of support. The use of different outgroups (myriapods, nematodes, or annelids + mollusks) resulted in many different placements of Collembola. The way in which the dataset was coded for analysis (DNA, DNA with the exclusion of third codon position and as amino acids) also had marked affects on tree topology. We found that nodal Support was spread evenly throughout the 13 mitochondrial genes and the exclusion of genes resulted in significantly less resolution in the inferred trees. Optimality criteria had a much lesser effect on topology than the preceding factors; parsimony and Bayesian trees for a given data set and treatment were quite similar. We therefore conclude that the relationships of the extant arthropod groups as inferred by mitochondrial genomes are highly vulnerable to outgroup choice, data treatment and gene choice, and no consistent alternative hypothesis of Collembola's relationships is supported. Pending the resolution of these identified problems with the application of mitogenomic data to basal arthropod relationships, it is difficult to justify the rejection of hexapod monophyly, which is well supported on morphological grounds. (c) The Willi Hennig Society 2004.
Resumo:
Analysis of the 16S rDNA sequence of Conglomeromonas largomobilis subsp. largomobilis supports a phylogenetic relationship with the species of the genus Azospirillum. This confirms results of previous nucleic acid hybridization studies (FALK, E. C., J. L. JOHNSON, V. D. L. BALDANI, J. DOBEREINER, and N. R. KRIEG. 1986. Int. J. Syst. Bacteriol. 36: 80-85). Conglomeromonas largomobilis subsp. largomobilis was most closely related to the species Azospirillim lipoferum and Azospirillum brasilense but sufficiently distant to warrant separate species status. Conglomeromonas largomobilis subsp. parooensis was more distantly related to the existing species of Azospirillum and represents an isolated subline of descent. On the basis of the phylogenetic evidence a prosposal is made to transfer the subspecies Conglom-eromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov. and to retain the genus Conglomeromonas by elevating the subspecies C. largomobilis subsp. parooensis to the type species of Conglomeromonas as Conglomeromonas parooensis sp. nov.
Resumo:
The relative abundance and topographical distribution of retinal cone photoreceptors was measured in 19 bird species to identify possible correlations between photoreceptor complement and visual ecology. In contrast to previous studies, all five types of cone photoreceptor were distinguished, using bright field and epifluorescent light microscopy, in four retinal quadrants. Land birds tended to show either posterior dorsal to anterior ventral or anterior dorsal to posterior ventral gradients in cone photoreceptor distribution, fundus coloration and oil droplet pigmentation across the retina. Marine birds tended to show dorsal to ventral gradients instead. Statistical analyses showed that the proportions of the different cone types varied significantly across the retinae of all species investigated. Cluster analysis was performed on the data to identify groups or clusters of species on the basis of their oil droplet complement. Using the absolute percentages of each oil droplet type in each quadrant for the analysis produced clusters that tended to reflect phylogenetic relatedness between species rather than similarities in their visual ecology. Repeating the analysis after subtracting the mean percentage of a given oil droplet type across the whole retina (the 'eye mean') from the percentage of that oil droplet type in each quadrant, i.e. to give a measure of the variation about the mean, resulted in clusters that reflected diet, feeding behaviour and habitat to a greater extent than phylogeny.
Resumo:
The architectonic features of the thalamic ventrobasal complex (Vb) of two species of Megachiropteran (Grey-headed flying fox, Pteropus poliocephalus, and the Eastern tube-nosed bat, Nyctimene robinsoni) are compared with those of a Microchiropteran (Australian ghost bat, Macroderma gigas). The somatosensory system was chosen for comparison as it represents a sensory system that has undergone analogous modifications in both Chiropteran lineages (the evolution of the wing). The components of Vb were examined as there are taxon-specific features in this region of the brain. Within the Megachiropteran Vb, four subnuclei were recognized: the ventral posterior medial (VPM), the ventral posterior lateral (VPL), the ventral posterior inferior (VPI), and the basal ventral medial (VMb). In the ghost bat only VPM and VPL were identified with certainty. No VPI was evident in the ghost bat, however a putative VMb was observed. Vb of the ghost bat also lacked the arcuate lamina, which distinguishes VPM from VPL in the Megachiropterans and many other mammals. These taxon-specific differences lend support to the proposal that the order Chiroptera has a diphyletic origin.
Resumo:
In the last few years two factors have helped to significantly advance our understanding of the Myxozoa. First, the phenomenal increase in fin fish aquaculture in the 1990s has lead to the increased importance of these parasites; in rum this has lead to intensified research efforts, which have increased knowledge of the development, diagnosis, and pathogenesis of myxozoans. The hallmark discovery in the 1980s that the life cycle of Myxobolus cerebralis requires development of an actinosporean stage in the Oligochaete. Tubifex tubifex, led to the elucidation of the life cycles of several other myxozoans. Also, the life cycle and taxonomy of the enigmatic PKX myxozoan has been resolved: it is the alternate stage of the unusual myxozoan. Tetracapsula bryosalmonae, from bryozoans. The 18S rDNA gene of many species has been sequenced, and here we add 22 new sequences to the data set. Phylogenetic analyses using all these sequences indicate that: 1) the Myxozoa are closely related to Cnidaria (also supported by morphological data), 2) marine taxa at the genus level branch separately from genera that usually infect freshwater fishes; 3) taxa cluster more by development and tissue location than by spore morphology; 4) the tetracapsulids branched off early in myxozoan evolution, perhaps reflected by their having bryozoan. rather than annelid hosts; 5) the morphology of actinosporeans offers little information for determining their myxosporean counterparts (assuming that they exist), and 6) the marine actinosporeans from Australia appear to form a clade within the platysporinid myxosporeans. Ribosomal DNA sequences have also enabled development of diagnostic tests for myxozoans. PCR and in situ hybridisation tests based on rDNA sequences have been developed for Myxobolus cerebralis. Ceratomyxa shasta. Kudoa spp,, and Tetracapsula bryosalmonae (PKX). Lectin-based and antibody tests have also been developed for certain myxozoans, such as PKX and C. shasta. We also review important diseases caused by myxozoans. which are emerging or re-emerging. Epizootics of whirling disease in wild rainbow trout (Oncorhynchus mykiss) have recently been reported throughout the Rocky Mountain states of the USA. With a dramatic increase in aquaculture of fishes using marine netpens, several marine myxozoans have been recognized or elevated in status as pathological agents. Kudoa thyrsites infections have caused severe post-harvest myoliquefaction in pen-reared Atlantic salmon (Salmo salar), and Ceratomyxa spp., Sphaerospora spp., and Myxidium leei cause disease in pen-reared sea bass (Dicentrarchus labrax) and sea bream species (family Sparidae) in Mediterranean countries.