235 resultados para Parsimony analysis of endemicity
Resumo:
The importance of overweight as a risk factor for coronary heart disease (CHD) remains unsettled. We estimated the relative risk (RR) for CHD associated with underweight (body mass index, BMI < 20 kg/m2), overweight (25 – 30 kg/m2) and obesity (= 30 kg/m2), compared with normal weight (20 – 25 kg/m2) in a random effects meta-analysis of 30 prospective studies, including 389,239 healthy, predominantly Caucasian persons. We also explored sources of heterogeneity between studies and examined effects of systematic adjustment for confounding and intermediary variables. Pooled age-, sex- and smoking-adjusted RRs (95% confidence interval) for overweight, obesity and underweight compared with normal weight were 1.33 (1.24 – 1.43), 1.69 (1.44 – 1.99) and 1.01 (0.85 – 1.20), respectively. Stratified analyses showed that pooled RRs for BMI were higher for studies with longer follow-up (= vs. < 15 years) and younger populations (< vs. = 60 years). Additional adjustment for blood pressure, cholesterol levels and physical activity decreased the RR per 5 BMI units from 1.28 (1.21 – 1.34) to 1.16 (1.11 – 1.21). We conclude that overweight and obesity are associated with a substantially increased CHD risk in Caucasians, whereas underweight is not. Prevention and reduction of overweight and obesity, therefore, remain of importance for preventing CHD.
Resumo:
An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
In this second paper, the three structural measures which have been developed are used in the modelling of a three stage centrifugal synthesis gas compressor. The goal of this case study is to determine the essential mathematical structure which must be incorporated into the compressor model to accurately model the shutdown of this system. A simple, accurate and functional model of the system is created via three structural measures. It was found that the model can be correctly reduced into its basic modes and that the order of the differential system can be reduced from 51(st) to 20(th). Of the 31 differential equational 21 reduce to algebraic relations, 8 become constants and 2 can be deleted thereby increasing the algebraic set from 70 to 91 equations. An interpretation is also obtained as to which physical phenomena are dominating the dynamics of the compressor add whether the compressor will enter surge during the shutdown. Comparisons of the reduced model performance against the full model are given, showing the accuracy and applicability of the approach. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Biologic valve re-replacement was examined in a series of 1343 patients who underwent aortic valve replacement at The Prince Charles Hospital, Brisbane, with a cryopreserved or 4 degrees C stored allograft valve or a xenograft valve, A parametric model approach was used to simultaneously model the competing risks of death without re-replacement and re-replacement before death, One hundred eleven patients underwent a first re-replacement for a variety of reasons (69 patients with xenograft valves, 28 patients with 4 degrees C stored allograft valves, and 14 patients with cryopreserved allograft valves), By multivariable analysis younger age at operation was associated with xenograft, 4 degrees C stored allograft, and cryopreserved allograft valve re-replacement, However, this effect was examined in the context of longer survival of younger patients, which increases their exposure to the risk of re-replacement as compared with that in older patients whose decreased survival reduced their probability of requiring valve re-replacement, In patients older than 60 years at the time of aortic valve replacement, the probability of re-replacement (for any reason) before death was similar for xenografts and cryopreserved allograft valves but higher for 4 degrees C stored valves, However, in patients younger than 60 years, the probability of re-replacement at any time during the remainder of the life of the patient was lower with the cryopreserved allograft valve compared with the xenograft valve and 4 degrees C stored allografts.
Resumo:
Chemorheology (and thus process modeling) of highly filled thermosets used in integrated circuit (IC) packaging has been complicated by their highly filled nature, fast kinetics of curing, and viscoelastic nature. This article summarizes a more thorough chemorheological analysis of a typical IC packaging thermoset material, including novel isothermal and nonisothermal multiwave parallel-plate chemorheology. This new chemorheological analysis may be used to optimize existing and design new IC packaging processes. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Workplace injuries at the University of Queensland Dental School during the period 1992-1994 were assessed to determine their incidence, and the associated indirect costs, causal factors, and appropriate preventive strategies. Overall, dental chairside assistants experienced a higher incidence of injuries than students both on a per worker and per time basis. Of the injuries with a low risk of cross-infection, burns and scalds from sterilizing equipment, and eye injuries in laboratories were the most common. This emphasizes the importance of wearing appropriate protective equipment in areas outside the treatment zone, and the need for signage and education. Common causes of sharps injuries were burs left in handpieces, two-handed needle recapping, and cleaning of probes in the sterilizing room. Changes to techniques and equipment would prevent such incidents. A range of factors which contribute to the calculation of indirect costs following injuries in the dental workplace are identified.
Resumo:
A new method to measure Escherichia coil cell debris size after homogenization is presented. It is based on cumulative sedimentation analysis under centrifugal force, coupled with Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis of sedimented proteins. The effects that fermentation and homogenization conditions have on the resulting debris distributions were investigated using this method. Median debris size decreased significantly from approximately 0.5 mu m to 0.3 mu m as the number of homogenization passes increased from 2 to 10. Under identical homogenization conditions, uninduced host cells in stationary phase had a larger debris size than exponential cells after 5 homogenizer passes. This difference was not evident after 2 or in passes, possibly because of confounding intact cells and the existence of a minimum debris size for the conditions investigated. Recombinant cells containing protein inclusion bodies had the smallest debris size following homogenization. The method was also used to measure the size distribution of inclusion bodies. This result compared extremely well with an independent determination using centrifugal disc photosedimentation (CDS), thus validating the method. This is the first method that provides accurate size distributions of E. coli debris without the need for sample pretreatment, theoretical approximations (e.g. extinction coefficients), or the separation of debris and inclusion bodies prior to analysis. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Soil erosion in the Philippine uplands is severe. Hedgerow intercropping is widely advocated as an effective means of controlling soil erosion from annual cropping systems in the uplands. However, few farmers adopt hedgerow intercropping even in areas where it has been vigorously promoted. This may be because farmers find hedgerow intercropping to be uneconomic compared to traditional methods of farming. This paper reports a cost-benefit analysis comparing the economic returns from traditional maize farming with those from hedgerow intercropping in an upland community with no past adoption of hedgerows. A simple erosion/productivity model, Soil Changes Under Agroforestry (SCUAF), is used to predict maize yields over 25 years. Economic data were collected through key informant surveys with experienced maize farmers in an upland community. Traditional methods of open-field farming of maize are economically attractive to farmers in the Philippine uplands. In the short term, establishment costs are a major disincentive to the adoption of hedgerow intercropping. In the long term, higher economic returns from hedgerow intercropping compared to open-field farming are realised, but these lie beyond farmers' limited planning horizons.
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.
Resumo:
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys3O-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of similar to 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 Variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys3O. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.
Resumo:
The solution conformation of a peptide LYS(11-36), which corresponds to the beta-sheet region in T4 lysozyme, has been examined in aqueous solution, TFE, and SDS micelles by CD and H-1 NMR spectroscopy. Secondary structure predictions suggest some beta-sheet and turn character in aqueous solution but predict a helical conformation in a more hydrophobic environment. The predictions were supported by the CD and NMR studies which showed the peptide to be relatively unstructured in aqueous solution, although there was some evidence of a beta-turn conformer which was maintained in 200 mM SDS and, to a lesser extent, in 50% TFE. The peptide was significantly helical in the presence of either 50% TFE or 200 mM SDS. TFE and SDS titrations showed that the peptide could form helical, sheet, or extended structure depending on the TFE or SDS concentration. The studies indicate that peptide environment is the determining factor in secondary structure adopted by LYS(11-36).