167 resultados para PROGESTIN RECEPTOR EXPRESSION
Resumo:
Seven cysteine-rich repeats form the ligand-binding region of the low-density lipoprotein (LDL) receptor. Each of these repeats is assumed to bind a calcium ion, which is needed for association of the receptor with its ligands, LDL and beta-VLDL. The effects of metal ions on the folding of the reduced N-terminal cysteine-rich repeat have been examined by using reverse-phase high-performance liquid chromatography to follow the formation of fully oxidized isomers with different disulfide connectivities. in the absence of calcium many of the 15 possible isomers formed on oxidation, whereas in its presence the predominant product at equilibrium had the native disulfide bond connectivities. Other metals were far less effective at directing disulfide bond formation: Mn2+ partly mimicked the action of Ca2+, but Ba2+, Sr2+, and Mg2+ had little effect. This metal-ion specificity was also observed in two-dimensional H-1 NMR spectral studies: only Ca2+ induced the native three-dimensional fold. The two paramagnetic ions, Gd3+ and Mn2+, and Cd2+ did not promote adoption of a well-defined structure, and the two paramagnetic ions did not displace calcium ions. The location of calcium ion binding sites in the repeat was also explored by NMR spectroscopy. The absence of chemical shift changes for the side chain proton resonances of Asp26, Asp36, and Glu37 from pH 3.9 to 6.8 in the presence of calcium ions and their proximal location in the NMR structures implicated these side chains as calcium ligands. Deuterium exchange NMR experiments also revealed a network of hydrogen bonds that stabilizes the putative calcium-binding loop.
Resumo:
Molecular mechanisms of zinc potentiation were investigated in recombinant human alpha 1 glycine receptors (GlyRs) by whole-cell patch-clamp recording and [H-3]strychnine binding assays. In the wild-type (WT) GlyR, 1 mu M zinc enhanced the apparent binding affinity of the agonists glycine and taurine and reduced their concentrations required for half-maximal activation. Thus, in the WT GlyR, zinc potentiation apparently occurs by enhancing agonist binding. However, analysis of GlyRs incorporating mutations in the membrane-spanning domain M1-M2 and M2-M3 loops, which are both components of the agonist gating mechanism, indicates that most mutations uncoupled zinc potentiation from glycine-gated currents but preserved zinc potentiation of taurine-gated currents. One such mutation in the M2-M3 loop, L274A, abolished the ability of zinc to potentiate taurine binding but did not inhibit zinc potentiation of taurine-gated currents. In this same mutant where taurine acts as a partial agonist, zinc potentiated taurine-gated currents but did not potentiate taurine antagonism of glycine-gated currents, suggesting that zinc interacts selectively with the agonist transduction pathway. The intracellular M246A mutation, which is unlikely to bind zinc, also disrupted zinc potentiation of glycine currents. Thus, zinc potentiation of the GlyR is mediated via allosteric mechanisms that are independent of its effects on agonist binding.
Resumo:
The spectrum of protein tyrosine phosphatases (PTPs) expressed in bone marrow-derived murine macrophages (BMMs) was examined using reverse transcriptase-polymerase chain reaction. Ten different PTP cDNAs were isolated and in this study we focus on mDEP-1, a type III receptor PTP. Three mDEP-1 transcripts were expressed in primary macrophages and macrophage cell lines and were induced during macrophage differentiation of M1 myeloid leukemia cells. A valiant mRNA Tvas identified that encodes an alternate carboxyl-terminus and 3' UTR. The expression of mDEP-1 was down-regulated by CSF-1 (macrophage colony-stimulating factor) and up-regulated by bacterial lipopolysaccharide, an important physiological regulator of macrophage function that opposes CSF-1 action. Whole mount irt situ hybridization, and immunolocalization of the protein, confirmed that mDEP-1 is expressed by a subset of embryonic macrophages in the liver and mesenchyme. mDEP-1 was also detected in the eye and peripheral nervous system of the developing embryo. Attempts to express mDEP-1 constitutively in the macrophage cell line RAW264 were unsuccessful, with results suggesting that the gene product inhibits cell proliferation.
Resumo:
Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.
Resumo:
Polymerase chain reaction (PCR)-based differential display was used to screen for alterations in gene expression in the mesolimbic system of the human alcoholic brain. Total RNA was extracted from the nucleus accumbens of five alcoholic and five control brains. A selected subpopulation of mRNA was reverse-transcribed to cDNA and amplified by PCR. A differentially expressed cDNA fragment was recovered, cloned, and sequenced. Full sequence analysis of this 467 bp fragment revealed 98.2% homology with the human mitochondrial 12S rRNA gene. Dot-blot analysis showed increased expression of this gem in nucleus accumbens and hippocampus, but not in the superior frontal cortex, primary motor cortex, caudate, and pallidus/putamen In a total of eight human alcoholic brains, compared with seven control brains. A similar increased expression was observed by dot-blot analysis, using RNA from the cerebral cortex of rats chronically treated with alcohol vapor. Hybridization of a 16S rRNA oligonucleotide probe indicated that the expression of both rRNAs genes was significantly increased in nucleus accumbens. These results indicate that chronic alcohol consumption induces alteration in expression of mitochondrial genes in selected brain regions. The altered gene expression may reflect mitochondrial dysfunction In the alcohol-affected brain.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.
Resumo:
The p75 neurotrophin receptor (p75NTR) has been shown to mediate neuronal death through an unknown pathway. We microinjected p75NTR expression plasmids into sensory neurons in the presence of growth factors and assessed the effect of the expressed proteins on cell survival. We show that, unlike other members of the TNFR family, p75NTR signals death through a unique caspase-dependent death pathway that does not involve the death domain and is differentially regulated by Bcl-2 family members: the anti-apoptotic molecule Bcl-2 both promoted, and was required for, p75NTR killing, whereas killing was inhibited by its homologue BcI-x(L). These results demonstrate that Bcl-2, through distinct molecular mechanisms, either promotes or inhibits neuronal death depending on the nature of the death stimulus.
Resumo:
Octopamine is a biogenic amine neurotransmitter of invertebrates that binds to a G-protein coupled receptor that has seven transmembrane domains. Formamidine pesticides like amitraz are highly specific agonists of the octopamine receptor. Amitraz is used extensively to control the cattle tick, Boophilus microplus, and many other ticks but now there are strains of ticks that are resistant to amitraz. We have isolated a cDNA from the cattle tick, B. miciroplus, that belongs to the biogenic amine family of receptors. The predicted amino acid sequence from this cDNA is most similar to octopamine receptors from insects. The nucleotide sequence of this gene from amitraz-resistant and amitraz-susceptible cattle ticks was identical. Thus, a point mutation/s did not confer resistance to amitraz in the strains we studied. Alternative explanations for resistance to amitraz in B. microplus are discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
CD4-selective targeting of an antibody-polycation-DNA complex was investigated The complex was synthesized with the anti-CD4 monoclonal antibody B-F5, polylysine(268) (pLL) and either the pGL3 control vector containing the luciferase reporter gene or the pGeneGrip vector containing the green fluorescent protein (GFP) gene. B-F5-pLL-DNA complexes inhibited the binding of I-125-B-F5 to CD4(+) Jurkat cells, while complexes synthesised either without B-F5 or using a non-specific mouse IgG1 antibody had little or no effect Expression of the luciferase reporter gene was achieved in Jurkat cells using the B-F5-pLL-pGL3 complex and was enhanced in the presence of PMA. Negligible luciferase activity was defected with the non-specific antibody complex in Jurkat cells or with the B-F5-pLL-pGL3 complex in the CD4(-) K-562 cells. Using complexes synthesised with the pGeneGrip vector, the transfection efficiency in Jurkat and K-562 cells was examined using confocal microscopy. More than 95% of Jurkat cells expressed GFP and the level of this expression was markedly enhanced by PMA. Negligible GFP expression was seen in K-562 cells or when B-F5 was replaced by a nonspecific antibody. Using flow cytometry, fluorescein-labelled complex showed specific targeting to CD4(+) cells in a mixed cell population from human peripheral blood. These studies demonstrate the selective transfection of CD4(+) T-lymphoid cells using a polycation-based gene delivery system. The complex may provide a means of delivering anti-HIV gene therapies to CD4(+) cells in vivo.
Resumo:
Four discontinuous extracellular sequence domains have been proposed to form the ligand binding sites of the ligand-gated ion channel receptor superfamily. In this study, we investigated the role of 12 contiguous residues of the inhibitory glycine receptor that define the proposed loop A ligand binding domain; Using the techniques of site-directed mutagenesis and patch-clamp electrophysiology, four of the 12 residues were shown to have impaired ligand binding. Three mutants, I93A, A101H, and N102A, resulted in significant (17-44-fold) increases in the agonist EC50 values as compared with the wild-type glycine receptor, whereas Hill coefficients, I-max values, and antagonist affinity remained largely unaffected. Consideration of receptor efficacy values indicates that these residues are involved in ligand binding rather than channel activation. A fourth mutant, W94A, failed to give rise to any glycine-activated currents, although cell-surface expression was observed, suggesting that this residue may also be involved in agonist binding. These data provide the most extensive characterization of the loop A ligand binding domain available to date and define two new residue locations, Ile(93) and Asn(102), as contributing to the four-loop model of ligand binding.
Resumo:
The olfactory neuroepithelium is characterised by the mosaic distribution of primary olfactory neurons that express different odorant receptors and cell surface glycoconjugates. Carbohydrates are believed to form a glycocode that mediates sorting out and fasciculation of primary olfactory axons through interactions with carbohydrate-binding proteins such as galectin-1. In the present study, we describe in detail the expression pattern of galectin-1 in the developing and adult rat olfactory system. We demonstrate that galectin-1 is expressed by olfactory ensheathing cells both in olfactory nerve and within the nerve fibre layer of the olfactory bulb of the embryonic and adult rat. In the adult rat, galectin-1 was preferentially expressed by olfactory ensheathing cells in the nerve fibre layer of the ventromedial and lateral surfaces of the olfactory bulb. Galectin-1 was also expressed by subsets of periglomerular cells and granule cells, particularly in the ventromedial region of the olfactory bulb. In adult rat, the galectin-1 ligand, N-acetyl-lactosamine, was expressed by primary olfactory axons that terminated in glomeruli present in the ventromedial and lateral olfactory bulb. These results suggest that expression of galectin-1 may provide a mechanism for the sorting of subpopulations of axons in the nerve fibre layer of the olfactory bulb during development as well as play a role in the postnatal maintenance of specific glomerular connections. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Several constitutively active mutant forms of the common β subunit of the human IL-3, IL-5 and GM-CSF receptors (hβc), which enable it to signal in the absence of ligand, have recently been described. Two of these, V449E and I374N, are amino acid substitutions in the transmembrane and extracellular regions of hβc, respectively. A third, FIΔ, contains a 37 amino acid duplication in the extracellular domain. We have shown previously that when expressed in primary murine haemopoietic cells, the extracellular mutants confer factor-independence on cells of the neutrophil and monocyte lineages only, whereas V449E does so on all cell types of the myeloid and erythroid compartments. To study the in vivo effects and leukaemic potential of these mutants, we have expressed all three in mice by bone marrow reconstitution using retrovirally infected donor cells. Expression of the extracellular mutants leads to an early onset, chronic myeloproliferative disorder marked by elevations in the neutrophil, monocyte, erythrocyte and platelet lineages. In contrast, expression of V449E leads to an acute leukaemia-like syndrome of anaemia, thrombocytopaenia and blast cell expansion. These data support the possibility that activating mutations in hβc are involved in haemopoietic disorders in man.