197 resultados para Modelling Systems
Resumo:
Multiple input multiple output (MIMO) wireless systems use multiple element antennas (MEAs) tit the transmitter (TX) and the receiver (RX) in order to offer improved information rates (capacity) over conventional single antenna systems in rich scattering environments. In this paper, an example of a simple MIMO system is considered in which both antennas and scattering objects is are formed by wire dipoles. Such it system can be analyzed in the strict electromagnetic (EM) sense and its capacity can be determined for varying array size, interelement spacing, and distributions of scatterers. The EM model of this MIMO system can be used to assess the validity of single- or double-bounce scattering models for mixed line of sight (LOS) and non-line of sight (NLOS) signal-propagation conditions. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In biologically mega-diverse countries that are undergoing rapid human landscape transformation, it is important to understand and model the patterns of land cover change. This problem is particularly acute in Colombia, where lowland forests are being rapidly cleared for cropping and ranching. We apply a conceptual model with a nested set of a priori predictions to analyse the spatial and temporal patterns of land cover change for six 50-100 km(2) case study areas in lowland ecosystems of Colombia. Our analysis included soil fertility, a cost-distance function, and neighbourhood of forest and secondary vegetation cover as independent variables. Deforestation and forest regrowth are tested using logistic regression analysis and an information criterion approach to rank the models and predictor variables. The results show that: (a) overall the process of deforestation is better predicted by the full model containing all variables, while for regrowth the model containing only the auto-correlated neighbourhood terms is a better predictor; (b) overall consistent patterns emerge, although there are variations across regions and time; and (c) during the transformation process, both the order of importance and significance of the drivers change. Forest cover follows a consistent logistic decline pattern across regions, with introduced pastures being the major replacement land cover type. Forest stabilizes at 2-10% of the original cover, with an average patch size of 15.4 (+/- 9.2) ha. We discuss the implications of the observed patterns and rates of land cover change for conservation planning in countries with high rates of deforestation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Systems biology is based on computational modelling and simulation of large networks of interacting components. Models may be intended to capture processes, mechanisms, components and interactions at different levels of fidelity. Input data are often large and geographically disperse, and may require the computation to be moved to the data, not vice versa. In addition, complex system-level problems require collaboration across institutions and disciplines. Grid computing can offer robust, scaleable solutions for distributed data, compute and expertise. We illustrate some of the range of computational and data requirements in systems biology with three case studies: one requiring large computation but small data (orthologue mapping in comparative genomics), a second involving complex terabyte data (the Visible Cell project) and a third that is both computationally and data-intensive (simulations at multiple temporal and spatial scales). Authentication, authorisation and audit systems are currently not well scalable and may present bottlenecks for distributed collaboration particularly where outcomes may be commercialised. Challenges remain in providing lightweight standards to facilitate the penetration of robust, scalable grid-type computing into diverse user communities to meet the evolving demands of systems biology.
Resumo:
A complete workflow specification requires careful integration of many different process characteristics. Decisions must be made as to the definitions of individual activities, their scope, the order of execution that maintains the overall business process logic, the rules governing the discipline of work list scheduling to performers, identification of time constraints and more. The goal of this paper is to address an important issue in workflows modelling and specification, which is data flow, its modelling, specification and validation. Researchers have neglected this dimension of process analysis for some time, mainly focussing on structural considerations with limited verification checks. In this paper, we identify and justify the importance of data modelling in overall workflows specification and verification. We illustrate and define several potential data flow problems that, if not detected prior to workflow deployment may prevent the process from correct execution, execute process on inconsistent data or even lead to process suspension. A discussion on essential requirements of the workflow data model in order to support data validation is also given..
Resumo:
The structure of a comprehensive research project into mine fires study applying the Ventgraph mine fire simulation software, preplanning of escape scenarios and general interaction with rescue responses is outlined. The project has Australian Coal Association Research Program (ACARP) funding and also relies on substantial mining company site support. This practical input from mine operators is essential and allows the approach to be introduced in the most creditable way. The effort is built around the introduction of fire simulation computer software to the Australian mining industry and the consequent modelling of fire scenarios in selected different mine layouts. Application of the simulation software package to the changing mine layouts requires experience to achieve realistic outcomes. Most Australian mines of size currently use a ventilation network simulation program. Under the project a small subroutine has been written to transfer the input data from the existing mine ventilation network simulation program to ‘Ventgraph’. This has been tested successfully. To understand fire simulation behaviour on the mine ventilation system, it is necessary to understood the possible effects of mine fires on various mine ventilation systems correctly first. Case studies demonstrating the possible effects of fires on some typical Australian coal mine ventilation circuits have been examined. The situation in which there is some gas make at the face and effects with fire have also been developed to emphasise how unstable and dangerous situations may arise. The primary objective of the part of the study described in this paper is to use mine fire simulation software to gain better understanding of how spontaneous combustion initiated fires can interact with the complex ventilation behaviour underground during a substantial fire. It focuses on the simulation of spontaneous combustion sourced heatings that develop into open fires. Further, it examines ventilation behaviour effects of spontaneous combustion initiated pillar fires and examines the difficulties these can be present if a ventilation reversal occurs. It also briefly examines simulation of use of the inertisation to assist in mine recovery. Mine fires are recognised across the world as a major hazard issue. New approaches allowing improvement in understanding their consequences have been developed as an aid in handling this complex area.
Resumo:
Current initiatives in the field of Business Process Management (BPM) strive for the development of a BPM standard notation by pushing the Business Process Modeling Notation (BPMN). However, such a proposed standard notation needs to be carefully examined. Ontological analysis is an established theoretical approach to evaluating modelling techniques. This paper reports on the outcomes of an ontological analysis of BPMN and explores identified issues by reporting on interviews conducted with BPMN users in Australia. Complementing this analysis we consolidate our findings with previous ontological analyses of process modelling notations to deliver a comprehensive assessment of BPMN.