80 resultados para Mine water treatment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrofluoric acid (HF) was used to pre-treat forest soils of south-east Queensland for assessing the effectiveness of iron (Fe) removal, carbon (C) composition using C-13 cross-polarisation (CP) with magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) before and after the HF pre-treatment, and the improvement of C-13 CPMAS NMR spectra. Soil samples were collected from 4 experimental sites of different soil types, harvest residue management or prescribed burning, and tree species. More than 86% of Fe was in all soil types removed by the HF treatment. The C-13 NMR spectral quality was improved with increased resolution, especially in the alkyl C and O-alkyl C regions, and reduced NMR run-time (1-5 h per sample compared with >20 h per sample without the pre-treatment). The C composition appeared to alter slightly after the pre-treatment, but this might be largely due to improved spectrometer conditions and increased resolution leading to more accurate NMR spectral integration. Organic C recovery after HF pre-treatment varied with soil types and forest management, and soluble soil organic matter (SOM) could be lost during the pre-treatment. The Fourier Transform-Infrared (FT-IR) spectra of HF extracts indicated the preferential removal of carboxylic C groups during the pre-treatment, but this could also be due to adsorbed water on the mineral matter. The NMR spectra revealed some changes in C composition and quality due to residue management and decomposition. Overall, the HF treatment was a useful pre-treatment for obtaining semi-quantitative C-13 CPMAS NMR spectra of subtropical Australian forest soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To determine the role of the putative kinase sites in the trafficking and hormonal regulation of human AQP2, three putative casein kinase II (Ser-148, Ser-229, Thr-244), one PKC (Ser-231), and one protein kinase A (Ser-256) site were altered to mimic a constitutively non-phosphorylated/phosphorylated state and were expressed in Madin-Darby canine kidney cells. Except for Ser-256 mutants, seven correctly folded AQP2 kinase mutants trafficked as wild-type AQP2 to the apical membrane via forskolin-sensitive intracellular vesicles. With or without forskolin, AQP2-Ser-256A was localized in intracellular vesicles, whereas AQP2-S256D was localized in the apical membrane. Phorbol 12-myristate 13-acetate-induced PKC activation following forskolin treatment resulted in vesicular distribution of all AQP2 kinase mutants, while all were still phosphorylated at Ser-256. Our data indicate that in collecting duct cells, AQP2 trafficking to vasopressin-sensitive vesicles is phosphorylation-independent, that phosphorylation of Ser-256 is necessary and sufficient for expression of AQP2 in the apical membrane, and that PMA-induced PKC-mediated endocytosis of AQP2 is independent of the AQP2 phosphorylation state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two steps of nitrification, namely the oxidation of ammonia to nitrite and nitrite to nitrate, often need to be considered separately in process studies. For a detailed examination, it is desirable to monitor the two-step sequence using online measurements. In this paper, the use of online titrimetric and off-gas analysis (TOGA) methods for the examination of the process is presented. Using the known reaction stoichiometry, combination of the measured signals (rates of hydrogen ion production, oxygen uptake and carbon dioxide transfer) allows the determination of the three key process rates, namely the ammonia consumption rate, the nitrite accumulation rate and the nitrate production rate. Individual reaction rates determined with the TOGA sensor under a number of operation conditions are presented. The rates calculated directly from the measured signals are compared with those obtained from offline liquid sample analysis. Statistical analysis confirms that the results from the two approaches match well. This result could not have been guaranteed using alternative online methods. As a case study, the influences of pH and dissolved oxygen (DO) on nitrite accumulation are tested using the proposed method. It is shown that nitrite accumulation decreased with increasing DO and pH. Possible reasons for these observations are discussed. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological nitrogen removal via the nitrite pathway in wastewater treatment is very important in Saving the cost of aeration and as an electron donor for denitrification. Wastewater nitrification and nitrite accumulation were carried out in a biofilm airlift reactor with autotrophic nitrifying biofilm. The biofilm reactor showed almost complete nitrification and most of the oxidized ammonium was present as nitrite at the ammonium load of 1.5 to 3.5 kg N/m3.d. Nitrite accumulation was stably achieved by the selective inhibition of nitrite oxidizers with free ammonia and dissolved oxygen limitation. Stable 100% conversion to nitrite could also be achieved even under the absence of free ammonia inhibition on nitrite oxidizers. Batch ammonium oxidation and nitrite oxidation with nitrite accumulating nitrifying biofilm showed that nitrite Oxidation was completely inhibited when free ammonia is higher than 0.2 mg N/L. However, nitrite oxidation activity was recovered as soon as the free ammonia concentration was below the threshold level when dissolved oxygen concentration was not the limiting factor. Fluorescence in situ hybridization analysis of cryosectioned nitrite accumulating nitrifying biofilm showed that the β-subclass of Proteobacteria, where ammonia oxidizers belong, was distributed outside the biofilm whereas the α-subclass of Proteobacteria, where nitrite oxidizers belong, was found mainly in the inner part of the biofilm. It is likely that dissolved oxygen deficiency or limitation in the inner part of the nitrifying biofilm, where nitrite oxidizers exist, is responsible for the complete shut down of the nitrite oxidizers activity under the absence of free ammonia inhibition.