135 resultados para Medical information systems
Resumo:
Conceptual modeling forms an important part of systems analysis. If this is done incorrectly or incompletely, there can be serious implications for the resultant system, specifically in terms of rework and useability. One approach to improving the conceptual modelling process is to evaluate how well the model represents reality. Emergence of the Bunge-Wand-Weber (BWW) ontological model introduced a platform to classify and compare the grammar of conceptual modelling languages. This work applies the BWW theory to a real world example in the health arena. The general practice computing group data model was developed using the Barker Entity Relationship Modelling technique. We describe an experiment, grounded in ontological theory, which evaluates how well the GPCG data model is understood by domain experts. The results show that with the exception of the use of entities to represent events, the raw model is better understood by domain experts
Resumo:
Domain specific information retrieval has become in demand. Not only domain experts, but also average non-expert users are interested in searching domain specific (e.g., medical and health) information from online resources. However, a typical problem to average users is that the search results are always a mixture of documents with different levels of readability. Non-expert users may want to see documents with higher readability on the top of the list. Consequently the search results need to be re-ranked in a descending order of readability. It is often not practical for domain experts to manually label the readability of documents for large databases. Computational models of readability needs to be investigated. However, traditional readability formulas are designed for general purpose text and insufficient to deal with technical materials for domain specific information retrieval. More advanced algorithms such as textual coherence model are computationally expensive for re-ranking a large number of retrieved documents. In this paper, we propose an effective and computationally tractable concept-based model of text readability. In addition to textual genres of a document, our model also takes into account domain specific knowledge, i.e., how the domain-specific concepts contained in the document affect the document’s readability. Three major readability formulas are proposed and applied to health and medical information retrieval. Experimental results show that our proposed readability formulas lead to remarkable improvements in terms of correlation with users’ readability ratings over four traditional readability measures.
Resumo:
This paper discusses an document discovery tool based on formal concept analysis. The program allows users to navigate email using a visual lattice metaphor rather than a tree. It implements a virtual file structure over email where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in email discovery. The system described provides more flexibility in retrieving stored emails than what is normally available in email clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems.