90 resultados para Inertial forces
Resumo:
Two stock-market simulation experiments investigated the notion that rumors that invoke stable-cause attributions spawn illusory associations and less regressive predictions and behavior. In Study 1, illusory perceptions of association and stable causation (rumors caused price changes on the day after they appeared) existed despite rigorous conditions of nonassociation (price changes were unrelated to rumors). Predictions (recent price trends will continue) and trading behavior (departures from a strong buy-low-sell-high strategy) were both anti-regressive. In Study 2, stability of attribution was manipulated via a computerized tutorial. Participants taught to view price-changes as caused by stable forces predicted less regressively and departed more from buy-low-sell-high trading patterns than those taught to perceive changes as caused by unstable forces. Results inform a social cognitive and decision theoretic understanding of rumor by integrating it with causal attribution, covariation detection, and prediction theory. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Objective: To investigate the impact characteristics of an ethylene vinyl acetate (EVA) mouthguard material with regulated air inclusions, which included various air cell volumes and wall thickness between air cells. In particular, the aim was to identify the magnitude and direction of forces within the impacts. Method: EVA mouthguard material, A mm thick and with and without air inclusions, was impacted with a constant force impact pendulum with an energy of 4.4 J and a velocity of 3 m/s. Transmitted forces through the EVA material were measured using an accelerometer, which also allowed the determination of force direction and magnitude within the impacts. Results: Statistically significant reductions in the transmitted forces were observed with all the air inclusion materials when compared with EVA without air inclusions. Maximum transmitted force through one air inclusion material was reduced by 32%. Force rebound was eliminated in one material, and reduced second force impulses were observed in all the air inclusion materials. Conclusion: The regulated air inclusions improved the impact characteristics of the EVA mouthguard material, the material most commonly used in mouthguards world wide.
Resumo:
In Australian universities the discipline of Geography has been the pace-setter in forging cross-disciplinary links to create multidisciplinary departments and schools, well ahead of other disciplines in humanities, social sciences and sciences, and also to a greater extent than in comparable overseas university systems. Details on all cross-disciplinary links and on immediate outcomes have been obtained by surveys of all heads of departments/schools with undergraduate Geography programs. These programs have traced their own distinctive trajectories, with ramifying links to cognate fields of enquiry, achieved through mergers, transfers, internal initiatives and, more recently, faculty-wide restructuring to create supradisciplinary schools. Geography's `exceptionalism' has proved short-lived. Disciplinary flux is now extending more widely within Australian universities, driven by a variety of internal and external forces, including: intellectual questioning and new ways of constituting knowledge; technological change and the information revolution; the growth of instrumentalism and credentialism, and managerialism and entre-preneurial imperatives; reinforced by a powerful budgetary squeeze. Geographers are proving highly adaptive in pursuit of cross-disciplinary connections, offering analytical tools and selected disciplinary insights useful to non-geographers. However, this may be at cost to undergraduate programs focussing on Geography's intellectual core. Whereas formerly Geography had high reproductive capacity but low instrumental value it may now be in a phase of enhanced utility but perilously low reproductive capacity.
Resumo:
Australia's rangelands are experiencing a post-productivist transition at a tempo comparable to Western Europe's, but in contexts that ensure marked divergence in impulses, actors, processes and outcomes. In Australia's most marginal lands, a flimsy mode of pastoral occupance is being displaced by renewed indigenous occupance, conservation and tourism, with significant changes in land ownership, property rights, investment sources and power relations, but also with structural problems arising from fugitive income streams. The sharp delineation between structurally coherent commodity-oriented regions and emerging amenity-oriented regions can provisionally be mapped at a national scale. A comparison of Australia with Western Europe indicates that three distinct but interconnected driving forces are propelling the rural transition, namely: agricultural overcapacity; the emergence of amenity-oriented uses; and changing societal values.
Resumo:
Adsorption of one nondissociating and four dissociating aromatic compounds onto three untreated activated carbons from dilute aqueous solutions were investigated. All adsorption experiments were preformed in pH-controlled solutions. The experimental isotherms were analyzed using the homogeneous Langmuir model. The surface chemical properties of the activated carbons were characterized using a combination of water adsorption, X-ray photoemission spectroscopy, and mass titration. These data give rise to a new insight into the adsorption mechanism of aromatic solutes, in their molecular and ionic forms, onto untreated activated carbons. It was found that, for the hydrophilic activated carbons, the dominant adsorption forces were observed to be dipolar interactions when the solutes were in their molecular form whereas dispersive forces, such as pi-pi interactions, were most likely dominant in the case of the basic hydrophobic carbons. However, when the solutes were in their ionic form adsorption occurs in all cases through dispersive forces.
Resumo:
Green Hill Fort, Thursday Islalld was constructed between 1891-1893 to defend the Australian colonies against a feared Russian invasion. It retained an operational role until the 1920.'1 and played a minor role in World /t'ar 2. From 1954 to 1993 the site, but not the facilities, was used as a weather station. More recently it has been home ofthe Ton-es Strait Historical Society and Museum Association museum. It is a major attraction during the tourist season and an important local icon. For archaeologists it has sign~ficance as a relatively intact nineteenth-century military installation. Two 'Centenary of Federation' grants have proVided the impetus to undertake conservation and presentation works involving various task -spec~fic, archaeological activities. At the management level archaeologists play the lead role in the project. The project has demonstrated the value oJarchaeology and tourism joining forces. The danger ofa 'theme park 'presentation has been avoided. Technical accuracy and careful site planning has ensured a high degree ofaccuracy is retained. Provided these qualities can be assured then, it is argued, there is an opportunity for archaeology to be a majOl; long-term beneficiary. But to achieve that, the discipline must move from being entrenched in its academic mould and become Jar more receptive to the broader needs ofthe twentyfirst century.
Resumo:
Semi-aquatic animals represent a transitional locomotor condition characterised by the possession of morphological features that allow locomotion both in water and on land. Most ecologically important behaviours of crocodilians occur in the water, raising the question of whether their 'terrestrial construction' constrains aquatic locomotion. Moreover, the demands for aquatic locomotion change with life-history stage. It was the aim of this research to determine the kinematic characteristics and efficiency of aquatic locomotion in different-sized crocodiles (Crocodylus porosus). Aquatic propulsion was achieved primarily by tail undulations, and the use of limbs during swimming was observed only in very small animals or at low swimming velocities in larger animals. Over the range of swimming speeds we examined, tail beat amplitude did not change with increasing velocity, but amplitude increased significantly with body length. However, amplitude expressed relative to body length decreased with increasing body length. Tail beat frequency increased with swimming velocity but there were no differences in frequency between different-sized animals. Mechanical power generated during swimming and thrust increased non-linearly with swimming velocity, but disproportionally so that kinematic efficiency decreased with increasing swimming velocity. The importance of unsteady forces, expressed as the reduced frequency, increased with increasing swimming velocity. Amplitude is the main determinant of body-size-related increases in swimming velocity but, compared with aquatic mammals and fish, crocodiles are slow swimmers probably because of constraints imposed by muscle performance and unsteady forces opposing forward movement. Nonetheless, the kinematic efficiency of aquatic locomotion in crocodiles is comparable to that of fully aquatic mammals, and it is considerably greater than that of semi-aquatic mammals.
Resumo:
Chest clapping, vibration, and shaking were studied in 10 physiotherapists who applied these techniques on an anesthetized animal model. Hemodynamic variables (such as heart rate, blood pressure, pulmonary artery pressure, and right atrial pressure) were measured during the application of these techniques to verify claims of adverse events. In addition, expired tidal volume and peak expiratory flow rate were measured to ascertain effects of these techniques. Physiotherapists in this study applied chest clapping at a rate of 6.2 +/- 0.9 Hz, vibration at 10.5 +/- 2.3 Hz, and shaking at 6.2 +/- 2.3 Hz. With the use of these rates, esophageal pressure swings of 8.8 +/- 5.0, 0.7 +/- 0.3, and 1.4 +/- 0.7 mmHg resulted from clapping, vibration, and shaking respectively. Variability in rates and forces generated by these techniques was 80% of variance in shaking force (P = 0.003). Application of these techniques by physiotherapists was found to have no significant effects on hemodynamic and most ventilatory variables in this study. From this study, we conclude that chest clapping, vibration, and shaking 1) can be consistently performed by physiotherapists; 2) are significantly related to physiotherapists' characteristics, particularly clinical experience; and 3) caused no significant hemodynamic effects.
Resumo:
Detection of a circumferential crack in a hollow section beam is investigated using coupled response measurements. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The suitability of the mode coupling methodology is first demonstrated analytically. Laboratory test results are then presented for circular hollow section beams with artificially generated cracks of varying severity. It is shown that this method has the potential as a damage detection tool for mechanical structures. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT-alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT-alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Subcycling, or the use of different timesteps at different nodes, can be an effective way of improving the computational efficiency of explicit transient dynamic structural solutions. The method that has been most widely adopted uses a nodal partition. extending the central difference method, in which small timestep updates are performed interpolating on the displacement at neighbouring large timestep nodes. This approach leads to narrow bands of unstable timesteps or statistical stability. It also can be in error due to lack of momentum conservation on the timestep interface. The author has previously proposed energy conserving algorithms that avoid the first problem of statistical stability. However, these sacrifice accuracy to achieve stability. An approach to conserve momentum on an element interface by adding partial velocities is considered here. Applied to extend the central difference method. this approach is simple. and has accuracy advantages. The method can be programmed by summing impulses of internal forces, evaluated using local element timesteps, in order to predict a velocity change at a node. However, it is still only statistically stable, so an adaptive timestep size is needed to monitor accuracy and to be adjusted if necessary. By replacing the central difference method with the explicit generalized alpha method. it is possible to gain stability by dissipating the high frequency response that leads to stability problems. However. coding the algorithm is less elegant, as the response depends on previous partial accelerations. Extension to implicit integration, is shown to be impractical due to the neglect of remote effects of internal forces acting across a timestep interface. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This article focuses on how US professional sports utilize the New International Division of Cultural Labor to supplement an overly costly local labor pool and over-supplied local market. We argue that while the classic problem of over-production is slowly eroding the sealed-off nature of US culture, the forces of its hyper-protectionist capitalism continue to characterize sports, precluding equal exchange.
Resumo:
Purpose: For treatment of various knee disorders, muscles are trained in open or closed kinetic chain tasks. Coordination between the heads of the quadriceps muscle is important for stability and optimal joint loading for both the tibiofemoral and the patellofemoral joint. The aim of this study was to examine whether the quadriceps femoris muscles are activated differently in open versus closed kinetic chain tasks. Methods: Ten healthy men and women (mean age 28.5 +/- 0.7) extended the knees isometrically in open and closed kinetic chain tasks in a reaction time paradigm using moderate force. Surface electromyography (EMG) recordings were made from four different parts of the quadriceps muscle. The onset and amplitude of EMG and force data were measured. Results: In closed chain knee extension, the onset of EMG activity of the four different muscle portions of the quadriceps was more simultaneous than in the open chain. In open chain, rectus femoris (RF) had the earliest EMG onset while vastus medialis obliquus was activated last (7 +/- 13 ms after RF EMG onset) and with smaller amplitude (40 +/- 30% of maximal voluntary contraction (MVC)) than in closed chain (46 +/- 43% MVC). Conclusions: Exercise in closed kinetic chain promotes more balanced initial quadriceps activation than does exercise in open kinetic chain. This may be of importance in designing training programs aimed toward control of the patellofemoral joint.
Resumo:
This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.