89 resultados para Gravity inversion. Basement relief. Potiguar basin. Constrained inversion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

C,C-Dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene NS-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-,beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G*) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-Bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C= C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G*) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A well-preserved palynoflora is reported from within a cored interval of a coal-exploratory borehole (1-UN-23-PI of the Geological Survey of Brazil) in the southern part of the Parnaiba Basin, northeastern Brazil. The sample studied is from the lower portion of the Piaui Formation. Its palynoflora is characterized by particular abundance of the trilete cavate/pseudosaccate miospores Spelaeotriletes triangulus Neves and Owens, 1966 and S. arenaceus Neves and Owens, 1966, together with cingulizonate forms mainly attributable to Vallatisporites Hacquebard, 1957 and Cristatisporites R. Potonie and Kremp emend. Butterworth et al., 1964. Radially and bilaterally symmetrical monosaccate pollen grains are also well-represented, chiefly by Plicatipollenites Lele, 1964 and Potonieisporites Bhardwaj, 1954, respectively. Taeniate grains (i.e., monosaccates and bisaccates) are relatively minor constituents of the palynoflora; no marine microplankton were encountered. Several species are described in detail : the trilete apiculate spores Brevitriletes levis (Balme and Hennelly) Bharadwaj and Srivastava, 1969 and Horriditriletes uruguaiensis (Marques-Toigo) Archangelsky and Gamerro, 1979; and the taeniate pollen grains Meristocorpus ostentus sp. nov. and Lahirites segmentatus sp. nov. A Pennsylvanian (Late Carboniferous : late Westphalian) age is adduced for the palynoflora via its correlation with part of the Tapajos Group (specifically, the upper Itaituba Formation) of the Amazonas Basin in northern Brazil. The entirely land-derived palynomorphs, associated with abundant plant debris, corroborate previous suggestions that the lower part of the Piaui Formation accumulated in a nonmarine setting under conditions of aridity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core samples from an upper Palaeozoic, partly glaciogene borehole section (Ordóñez: YPF Cd O es-1) in the southern Chaco-Paraná Basin (Córdoba Province, northeastern Argentina) have produced variable palynological results. Samples from the lower part of the section (i.e., from the diamictite-bearing upper Ordóñez Formation) proved non-palyniferous. Those from the overlying, essentially post-glacial Victoriano Rodríguez Formation yielded spore-pollen assemblages in varying concentrations and in good to excellent states of preservation, thus providing the material basis for the present account. The palynomorph taxa represented in the assemblages comprise 20 species of spores (distributed among 14 genera) and 25 species of pollen grains (14 genera). The majority of the species are described in systematic detail. One trilete spore species -Convolutispora archangelskyi- is newly proposed. Several other, possibly new species (three of trilete spores, one of monosaccate pollen) are represented insufficiently for other than informal naming. The following new combinations, also of trilete spore species, are instituted: Converrucosisporites confluens (Archangelsky & Gamerro, 1979), C. micronodosus (Balme & Hennelly, 1956), and Anapiculatisporites tereteangulatus (Balme & Hennelly, 1956). Sculptural intergradation (granulate through verrucate) among three species -Granulatisporites austroamericanus Archangelsky & Gamerro, 1979, C. confluens, and C. micronodosus- prompts their informal grouping, proposed herein, as the Converrucosisporites confluens Morphon, which is also recognizable elsewhere in the Gondwanan Permian. The possibility, if not the likelihood, that G. austroamericanus is conspecific with Microbaculispora tentula Tiwari, 1965 is canvassed. The palynologically productive borehole section of the Victoriano Rodríguez Formation studied here is assignable to the middle to upper Cristatisporites Zone and to the succeeding Striatites Zone, thus signifying an Early Permian age for this section and facilitating correlation with strata of the Paraná and Paganzo Basins. From this and prior work, the Ordóñez well sequence embracing the Ordóñez and Victoriano Rodríguez Formations includes, in addition to the latter two zones, the preceding (late Pennsylvanian) Potonieisporites-Lundbladispora Zone which is known from the lower to mid-upper part of the Ordóñez Formation. Thus, the Carboniferous-Permian boundary can be inferred to lie within the upper part of the latter formation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of convective and absolute instabilities on the formation of drops formed from cylindrical liquid jets of glycerol/water issuing into still air were investigated. Medium-duration reduced gravity tests were conducted aboard NASA's KC-135 and compared to similar tests performed under normal gravity conditions to aid in understanding the drop formation process. In reduced gravity, the Rayleigh-Chandrasekhar Equation was found to accurately predict the transition between a region of absolute and convective instability as defined by a critical Weber number. Observations of the physics of the jet, its breakup, and subsequent drop dynamics under both gravity conditions and the effects of the two instabilities on these processes are presented. All the normal gravity liquid jets investigated, in regions of convective or absolute instability, were subject to significant stretching effects, which affected the subsequent drop and associated geometry and dynamics. These effects were not displayed in reduced gravity and, therefore, the liquid jets would form drops which took longer to form (reduction in drop frequency), larger in size, and more spherical (surface tension effects). Most observed changes, in regions of either absolute or convective instabilities, were due to a reduction in the buoyancy force and an increased importance of the surface tension force acting on the liquid contained in the jet or formed drop. Reduced gravity environments allow better investigations to be performed into the physics of liquid jets, subsequently formed drops, and the effects of instabilities on these systems. In reduced gravity, drops form up to three times more slowly and as a consequence are up to three times larger in volume in the theoretical absolute instability region than in the theoretical convective instability region. This difference was not seen in the corresponding normal gravity tests due to the masking effects of gravity. A drop is shown to be able to form and detach in a region of absolute instability, and spanning the critical Weber number (from a region of convective to absolute instability) resulted in a marked change in dynamics and geometry of the liquid jet and detaching drops. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism underlying segregation in liquid fluidized beds is investigated in this paper, A binary fluidized bed system not at a stable equilibrium condition. is modelled in the literature as forming a mixed part-corresponding to stable mixture-at the bottom of the bed and a pure layer of excess components always floating on the mixed part. On the basis of this model: (0 comprehensive criteria for binary particles of any type to mix/segregate, and (ii) mixing, segregation regime map in terms of size ratio and density ratio of the particles for a given fluidizing medium, are established in this work. Therefore, knowing the properties of given particles, a second type of particles can be chosen in order to avoid or to promote segregation according to the particular process requirements. The model is then advanced for multicomponent fluidized beds and validated against experimental results observed for ternary fluidized beds. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta-strand conformation is unknown for short peptides in aqueous solution, yet it is a fundamental building block in proteins and the crucial recognition motif for proteolytic enzymes that enable formation and turnover of all proteins. To create a generalized scaffold as a peptidomimetic that is preorganized in a beta-strand, we individually synthesized a series of 15-22-membered macrocyclic analogues of tripeptides and analyzed their structures. Each cycle is highly constrained by two trans amide bonds and a planar aromatic ring with a short nonpeptidic linker between them. A measure of this ring strain is the restricted rotation of the component tyrosinyl aromatic ring (DeltaG(rot) 76.7 kJ mol(-1) (16-membered ring), 46.1 kJ mol(-1) (17-membered ring)) evidenced by variable temperature proton NMR spectra (DMF-d(7), 200-400 K). Unusually large amide coupling constants ((3)J(NH-CHalpha) 9-10 Hz) corresponding to large dihedral angles were detected in both protic and aprotic solvents for these macrocycles, consistent with a high degree of structure in solution. The temperature dependence of all amide NH chemical shifts (Deltadelta/T7-12 ppb/deg) precluded the presence of transannular hydrogen bonds that define alternative turn structures. Whereas similar sized conventional cyclic peptides usually exist in solution as an equilibrium mixture of multiple conformers, these macrocycles adopt a well-defined beta-strand structure even in water as revealed by 2-D NMR spectral data and by a structure calculation for the smallest (15-membered) and most constrained macrocycle. Macrocycles that are sufficiently constrained to exclusively adopt a beta-strand-mimicking structure in water may be useful pre-organized and generic templates for the design of compounds that interfere with beta-strand recognition in biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[GRAPHICS] The regioselective syntheses and structures are reported for two tris-macrocylic compounds, each possessing two antiparallel loops on a macrocyclic scaffold constrained by two oxazoles and two thiazoles. NMR solution structures show the loops projecting from the same face of the macrocycle. Such molecules are shown to be prototypes for mimicking multiple loops of proteins.