80 resultados para Glycolipid Antigens
Resumo:
This study examined the nature of the infiltrating cells in Porphyromonas gingivalis-induced lesions and immunoglobulins in the serum samples of BALB/c (H-2(d)), C57BL6 (H-2(b)), DBA/2J (H-2(d)) and CBA/CaH (H-2(k)) mice. Mice were immunized intraperitoneally with P. gingivalis outer membrane antigens or sham-immunized with phosphate-buffered saline followed by subcutaneous challenge with live organisms 1 week after the final immunization. The resulting skin abscesses were excised 7 days later, cryostat sections cut and an immunoperoxidase method used to detect the presence of CD4(+) and CD8(+) T-cell subsets, CD14(+) macrophages and CD19(+) B cells. Peroxidase positive neutrophils and IgG1- and IgG2a-producing plasma cells were also identified. Anti P. gingivalis IgG1 and IgG2a subclass antibodies were determined in serum obtained by cardiac puncture. Very few CD8(+) T cells and CD19(+) B cells were found in any of the lesions. The percentages of CD4(+) cells, CD14(+) cells and neutrophils were similar in lesions of immunized BALB/c and C57BL6 mice, with a trend towards a higher percentage of CD14(+) cells in sham-immunized mice. The percentage of CD14(+) cells was higher than that of CD4(+) cells in immunized compared with sham-immunized DBA/2J mice. The percentages of CD4(+) and CD14(+) cells predominated in immunized CBA/CaH mice and CD4(+) cells in sham-immunized CBA/CaH mice. The percentage of neutrophils in immunized CBA/CaH mice was significantly lower than that of CD14(+) cells and CD4(+) cells in sham-immunized mice. IgG1(+) plasma cells were more dominant than IgG2a(+) cells in immunized BALB/c, C57BL6 and DBA/2J mice, whereas IgG2a(+) plasma cells were more obvious in sham-immunized mice. IgG2a(+) plasma cells were predominant in immunized and sham-immunized CBA/CaH mice. In the serum, specific anti-P. gingivalis IgG2a antibody levels (Th1 response) were higher than IgG1 levels (Th2 response) in sham-immunized CBA/CaH and DBA/2J mice. In immunized BALB/c mice, IgG2a levels were lower than IgG1 levels, while IgG2a levels were higher in immunized C57BL6 mice. In conclusion, this study has shown differences in the proportion of infiltrating leukocytes and in the subclasses of immunoglobulin produced locally and systemically in response to P. gingivalis in different strains of mice, suggesting a degree of genetic control over the response to P. gingivalis.
Resumo:
Epstein-Barr virus (EBV)-encoded oncogene latent membrane protein (LMP) 1, which is consistently expressed in multiple EBV-associated malignancies, has been proposed as a potential target antigen for any future vaccine designed to control these malignancies. However, the high degree of genetic variation in the LMP1 sequence has been considered a major impediment for its use as a potential immunotherapeutic target for the treatment of EBV-associated malignancies. In the present study, we have employed a highly efficient strategy, based on ex vivo functional assays, to conduct an extensive sequence-wide analysis of LMP1-specific T-cell responses in a large panel of healthy virus carriers of diverse ethnic origin and nasopharyngeal carcinoma patients. By comparing the frequencies of T cells specific for overlapping peptides spanning LMP1, we mapped a number of novel HLA class I- and class II-restricted LMP1 T-cell epitopes, including an epitope with dual HLA class I restriction. More importantly, extensive sequence analysis of LMP1 revealed that the majority of the T-cell epitopes were highly conserved in EBV isolates from Caucasian, Papua New Guinean, African, and Southeast Asian populations, while unique geographically constrained genetic variation was observed within one HLA A2 supertype-restricted epitope. These findings indicate that conserved LMP1 epitopes should be considered in designing epitope-based immunotherapeutic strategies against EBV-associated malignancies in different ethnic populations.
Resumo:
Human cytomegalovirus (HCMV) can establish both nonproductive (latent) and productive (lytic) infections. Many of the proteins expressed during these phases of infection could be expected to be targets of the immune response; however, much of our understanding of the CD8(+)-T-cell response to HCMV is mainly based on the pp65 antigen. Very little is known about T-cell control over other antigens expressed during the different stages of virus infection; this imbalance in our understanding undermines the importance of these antigens in several aspects of HCMV disease pathogenesis. In the present study, an efficient and rapid strategy based on predictive bioinformatics and ex vivo functional T-cell assays was adopted to profile CD8(+)-T-cell responses to a large panel of HCMV antigens expressed during different phases of replication. These studies revealed that CD8(+)-T-cell responses to HCMV often contained multiple antigen-specific reactivities, which were not just constrained to the previously identified pp65 or IE-1 antigens. Unexpectedly, a number of viral proteins including structural, early/late antigens and HCMV-encoded immunomodulators (pp28, pp50, gH, gB, US2, US3, US6, and UL18) were also identified as potential targets for HCMV-specific CD8(+)-T-cell immunity. Based on this extensive analysis, numerous novel HCMV peptide epitopes and their HLA-restricting determinants recognized by these T cells have been defined. These observations contrast with previous findings that viral interference with the antigen-processing pathway during lytic infection would render immediate-early and early/late proteins less immunogenic. This work strongly suggests that successful HCMV-specific immune control in healthy virus carriers is dependent on a strong T-cell response towards a broad repertoire of antigens.
Resumo:
Development of an epitope-based vaccination strategy designed to enhance Epstein-Barr virus (EBV)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is increasingly being considered as a preferred approach for the treatment of EBV-associated relapsed Hodgkin disease (HD) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane proteins, LMP1 and LMP2, are the only target antigens available for therapeutic augmentation of CTL responses in patients with HD and NPC. Here, we describe preclinical studies using a recombinant poxvirus vaccine that encodes a polyepitope protein comprising 6 HLA A2-restricted epitopes derived from LMP1. Human cells infected with this recombinant polyepitope construct were efficiently recognized by LM1-specific CTL lines from HLAA2 healthy individuals. Furthermore, immunization of HLrA A2/K-b mice with this polyepitope vaccine consistently generated strong LMP1 -specific CTL responses to 5 of the. 6 epitopes, which were readily detected by both ex vivo and in vitro assays. More important, this polyepitope vaccine successfully reversed the outgrowth of LMP1-expressing tumors in HLA A2/Kb mice. These studies provide an important platform for the development of an LMP-based polyepitope vaccine as an immunotherapeutic tool for the treatment of EBV-associated HD and NPC. (C) 2003 by The American Society of Hematology.
Resumo:
A blocking ELISA targeting an immunodominant West Nile epitope on the West Nile Virus NS1 protein was assessed for the detection of West Nile-specific antibodies in blood samples collected from 584 sentinel chickens and 238 wild birds collected in-New Jersey from May-December 2000. Ten mallard ducks (Anas platyrhynchos) experimentally infected with West Nile virus and six uninfected controls were also tested. The ELISA proved specific in detecting WNV antibodies in 9/10 chickens and 4/4 wild birds previously confirmed as positive by Plaque Reduction Neutralization test (PRNT) at the Center for Disease Control, Division of Vector Borne Diseases, Fort Collins, CO, USA (CDC). Nine out of the ten experimentally infected mallard ducks also tested positive for WN antibodies in the blocking ELISA, while 6/6 uninfected controls did not. Additionally, 1705 wild birds, collected in New Jersey from December 2000-November 2001 and Long Island, New York between November 1999 and August 2001 were also tested for WN antibodies by the blocking ELISA. These tests identified 30 positive specimens, 12 of which had formalin-fixed tissues available to allow detection of WN specific viral antigen in various tissues by WNV-specific immunohistochemistry. Our results indicate that rapid and specific detection of antibodies to WN virus in sera from a range of avian species by blocking ELISA is an effective strategy for WN Virus surveillance in avian hosts. In combination with detection of WN-specific antigens in tissues by immunohistochemistry (IHC) the blocking ELISA will also be useful for confirming WN infection in diseased birds.