125 resultados para Fault coverage
Resumo:
Dimensionless spray flux Ψa is a dimensionless group that characterises the three most important variables in liquid dispersion: flowrate, drop size and powder flux through the spray zone. In this paper, the Poisson distribution was used to generate analytical solutions for the proportion of nuclei formed from single drops (fsingle) and the fraction of the powder surface covered by drops (fcovered) as a function of Ψa. Monte-Carlo simulations were performed to simulate the spray zone and investigate how Ψa, fsingle and fcovered are related. The Monte-Carlo data was an excellent match with analytical solutions of fcovered and fsingle as a function of Ψa. At low Ψa, the proportion of the surface covered by drops (fcovered) was equal to Ψa. As Ψa increases, drop overlap becomes more dominant and the powder surface coverage levels off. The proportion of nuclei formed from single drops (fsingle) falls exponentially with increasing Ψa. In the ranges covered, these results were independent of drop size, number of drops, drop size distribution (mono-sized, bimodal and trimodal distributions), and the uniformity of the spray. Experimental data of nuclei size distributions as a function of spray flux were fitted to the analytical solution for fsingle by defining a cutsize for single drop nuclei. The fitted cutsizes followed the spray drop sizes suggesting that the method is robust and that the cutsize does indicate the transition size between single drop and agglomerate nuclei. This demonstrates that the nuclei distribution is determined by the dimensionless spray flux and the fraction of drop controlled nuclei can be calculated analytically in advance.
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).
Resumo:
Product Description: An engaging, comprehensive and colourful introduction, Social Psychology is now fully revised and updated in its 4th edition. It remains accessible, involving and clearly structured, exploring key aspects of social psychology. Through its many features and lively approach, Social Psychology will inform and challenge students everywhere and will prove invaluable to anyone with an interest in the field. Social Psychology effectively consolidates European and North American perspectives to provide coverage with a unique global flavour.
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
In this ambitious book, Burgoon, Stern, and Dillman present the most comprehensive coverage of the literature on interpersonal adaptation that I have seen in recent years. Their mission is to make a critical examination of this whole area from both theoretical and methodological perspectives, and then to present their own synthetic theory (interpersonal adaptation theory, IAT) and research agenda. Such a mission produces very high expectations in readers, and inevitably some readers will feel that the authors do not achieve all of it. Personally, I was impressed by how much they do achieve, and I was intrigued by the questions they did not answer. One can ask no more than this of any single book.