107 resultados para Explicit Finite Element Modelling
Resumo:
Modeling volcanic phenomena is complicated by free-surfaces often supporting large rheological gradients. Analytical solutions and analogue models provide explanations for fundamental characteristics of lava flows. But more sophisticated models are needed, incorporating improved physics and rheology to capture realistic events. To advance our understanding of the flow dynamics of highly viscous lava in Peléean lava dome formation, axi-symmetrical Finite Element Method (FEM) models of generic endogenous dome growth have been developed. We use a novel technique, the level-set method, which tracks a moving interface, leaving the mesh unaltered. The model equations are formulated in an Eulerian framework. In this paper we test the quality of this technique in our numerical scheme by considering existing analytical and experimental models of lava dome growth which assume a constant Newtonian viscosity. We then compare our model against analytical solutions for real lava domes extruded on Soufrière, St. Vincent, W.I. in 1979 and Mount St. Helens, USA in October 1980 using an effective viscosity. The level-set method is found to be computationally light and robust enough to model the free-surface of a growing lava dome. Also, by modeling the extruded lava with a constant pressure head this naturally results in a drop in extrusion rate with increasing dome height, which can explain lava dome growth observables more appropriately than when using a fixed extrusion rate. From the modeling point of view, the level-set method will ultimately provide an opportunity to capture more of the physics while benefiting from the numerical robustness of regular grids.
Resumo:
Silicic volcanic eruptions are typically accompanied by repetitive Long-Period (LP) seismicity that originates from a small region of the upper conduit. These signals have the capability to advance eruption prediction, since they commonly precede a change in the eruption vigour. Shear bands forming along the conduit wall, where the shear stresses are highest, have been linked to providing the seismic trigger. However, existing computational models are unable to generate shear bands at the depths where the LP signals originate using simple magma strength models. Presented here is a model in which the magma strength is determined from a constitutive relationship dependent upon crystallinity and pressure. This results in a depth-dependent magma strength, analogous to planetary lithospheres. Hence, in shallow highly-crystalline regions a macroscopically discontinuous brittle type of deformation will prevail, whilst in deeper crystal-poor regions there will be a macroscopically continuous plastic deformation mechanism. This will result in a depth where the brittle-ductile transition occurs, and here shear bands disconnected from the free-surface may develop. We utilize the Finite Element Method and use axi-symmetric coordinates to model magma flow as a viscoplastic material, simulating quasi-static shear bands along the walls of a volcanic conduit. Model results constrained to the Soufrière Hills Volcano, Montserrat, show the generation of two types of shear bands: upper-conduit shear bands that form between the free-surface to a few 100 metres below it and discrete shear bands that form at the depths where LP seismicity is measured to occur corresponding to the brittle-ductile transition and the plastic shear region. It is beyond the limitation of the model to simulate a seismic event, although the modelled viscosity within the discrete shear bands suggests a failure and healing cycle time that supports the observed LP seismicity repeat times. However, due to the paucity of data and large parameter space available these results can only be considered to be qualitative rather than quantitative at this stage.
Resumo:
The moving finite element collocation method proposed by Kill et al. (1995) Chem. Engng Sci. 51 (4), 2793-2799 for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures. Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). The method is simple yet sufficiently accurate for use in adsorption problems, where global collocation methods fail. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A finite element model (FEM) of the cell-compression experiment has been developed in dimensionless form to extract the fundamental cell-wall-material properties (i.e. the constitutive equation and its parameters) from experiment force-displacement data. The FEM simulates the compression of a thin-walled, liquid-filled sphere between two flat surfaces. The cell-wall was taken to be permeable and the FEM therefore accounts for volume loss during compression. Previous models assume an impermeable wall and hence a conserved cell volume during compression. A parametric study was conducted for structural parameters representative of yeast. It was shown that the common approach of assuming reasonable values for unmeasured parameters (e.g. cell-wall thickness, initial radial stretch) can give rise to nonunique solutions for both the form and constants in the cell-wall constitutive relationship. Similarly, measurement errors can also lead to an incorrectly defined cell-wall constitutive relationship. Unique determination of the fundamental wall properties by cell compression requires accurate and precise measurement of a minimum set of parameters (initial cell radius, initial cell-wall thickness, and the volume loss during compression). In the absence of such measurements the derived constitutive relationship may be in considerable error, and should be evaluated against its ability to predict the outcome of other mechanical experiments. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.
Resumo:
We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.
Theoretical and numerical analyses of convective instability in porous media with upward throughflow
Resumo:
Exact analytical solutions have been obtained for a hydrothermal system consisting of a horizontal porous layer with upward throughflow. The boundary conditions considered are constant temperature, constant pressure at the top, and constant vertical temperature gradient, constant Darcy velocity at the bottom of the layer. After deriving the exact analytical solutions, we examine the stability of the solutions using linear stability theory and the Galerkin method. It has been found that the exact solutions for such a hydrothermal system become unstable when the Rayleigh number of the system is equal to or greater than the corresponding critical Rayleigh number. For small and moderate Peclet numbers (Pe less than or equal to 6), an increase in upward throughflow destabilizes the convective flow in the horizontal layer. To confirm these findings, the finite element method with the progressive asymptotic approach procedure is used to compute the convective cells in such a hydrothermal system. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Hydrothermal alteration of a quartz-K-feldspar rock is simulated numerically by coupling fluid flow and chemical reactions. Introduction of CO2 gas generates an acidic fluid and produces secondary quartz, muscovite and/or pyrophyllite at constant temperature and pressure of 300 degrees C and 200 MPa. The precipitation and/or dissolution of the secondary minerals is controlled by either mass-action relations or rate laws. In our simulations the mass of the primary elements are conserved and the mass-balance equations are solved sequentially using an implicit scheme in a finite-element code. The pore-fluid velocity is assumed to be constant. The change of rock volume due to the dissolution or precipitation of the minerals, which is directly related to their molar volume, is taken into account. Feedback into the rock porosity and the reaction rates is included in the model. The model produces zones of pyrophyllite quartz and muscovite due to the dissolution of K-feldspar. Our model simulates, in a simplified way, the acid-induced alteration assemblages observed in various guises in many significant mineral deposits. The particular aluminosilicate minerals produced in these experiments are associated with the gold deposits of the Witwatersrand Basin.
Resumo:
The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.
Resumo:
The earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer. Brittle failure of the lithosphere occurs when stresses are high. In order to build a realistic simulation of the planet's evolution, the complete viscoelastic/brittle convection system needs to be considered. A particle-in-cell finite element method is demonstrated which can simulate very large deformation viscoelasticity with a strain-dependent yield stress. This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic benchmarks, and the characteristics of the method are discussed.
Resumo:
We conduct a theoretical analysis of steady-state heat transfer problems through mid-crustal vertical cracks with upward throughflow in hydrothermal systems. In particular, we derive analytical solutions for both the far field and near field of the system. In order to investigate the contribution of the forced advection to the total temperature of the system, two concepts, namely the critical Peclet number and the critical permeability of the system, have been presented and discussed in this paper. The analytical solution for the far field of the system indicates that if the pore-fluid pressure gradient in the crust is lithostatic, the critical permeability of the system can be used to determine whether or not the contribution of the forced advection to the total temperature of the system is negligible. Otherwise, the critical Peclet number should be used. For a crust of moderate thickness, the critical permeability is of the order of magnitude of 10(-20) m(2), under which heat conduction is the overwhelming mechanism to transfer heat energy, even though the pore-fluid pressure gradient in the crust is lithostatic. Furthermore, the lower bound analytical solution for the near field of the system demonstrates that the permeable vertical cracks in the middle crust can efficiently transfer heat energy from the lower crust to the upper crust of the Earth. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
An equivalent algorithm is proposed to simulate thermal effects of the magma intrusion in geological systems, which are composed of porous rocks. Based on the physical and mathematical equivalence, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with a physically equivalent heat source. From the analysis of an ideal solidification model, the physically equivalent heat source has been determined in this paper. The major advantage in using the proposed equivalent algorithm is that the fixed finite element mesh with a variable integration time step can be employed to simulate the thermal effect of the intruded magma solidification using the conventional finite element method. The related numerical results have demonstrated the correctness and usefulness of the proposed equivalent algorithm for simulating the thermal effect of the intruded magma solidification in geological systems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.