117 resultados para Epidermal growth factor receptor expression
Resumo:
We have identified a novel, highly conserved protein of 14 kD copurifying with late endosomes/lysosomes on density gradients. The protein, now termed p14, is peripherally associated with the cytoplasmic face of late endosomes/lysosomes in a variety of different cell types. In a two-hybrid screen with p14 as a bait, we identified the mitogen-activated protein kinase (MAPK) scaffolding protein MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) partner 1 (MP1) as an interacting protein. We confirmed the specificity of this interaction in vitro by glutathione S-transferase pull-down assays and by coimmunoprecipitation, cosedimentation on glycerol gradients, and colocalization. Moreover, expression of a plasma membrane-targeted p14 causes mislocalization of coexpressed MP1. In addition, we could reconstitute protein complexes containing the p14-MP1 complex associated with ERK and MEK in vitro. The interaction between p14 and MP1 suggests a MAPK scaffolding activity localized to the cytoplasmic surface of late endosomes/lysosomes, thereby combining catalytic scaffolding and subcellular compartmentalization as means to modulate MAPK signaling within a cell.
Resumo:
dEndocytosis is required for efficient mitogen-activated protein kinase (MAPK) activation by activated growth factor receptors. We examined if H-Ras and K-Ras proteins, which are distributed across different plasma membrane microdomains, have equal access to the endocytic compartment and whether this access is necessary for downstream signaling. Inhibition of endocytosis by dominant interfering dynamin-K44A blocked H-Ras but not K-Ras-mediated PC12 cell differentiation and selectively inhibited H-Ras- but not K-Ras-mediated Raf-1 activation in BHK cells. H-Ras- but not K-Ras-mediated Raf-1 activation was also selectively dependent on phosphoinositide 3-kinase activity. Stimulation of endocytosis and endocytic recycling by wildtype Rab5 potentiated H-Ras-mediated Raf-1 activation. In contrast, Rab5-Q79L, which stimulates endocytosis but not endocytic recycling, redistributed activated H-Ras from the plasma membrane into enlarged endosomes and inhibited H-Ras-mediated Raf-1 activation. Rab5-Q79L expression did not cause the accumulation of wild-type H-Ras in enlarged endosomes. Expression of wild-type Rab5 or Rab5-Q79L increased the specific activity of K-Ras-activated Raf-1 but did not result in any redistribution of K-Ras from the plasma membrane to endosomes. These results show that H-Ras but not K-Ras signaling though the Raf/MEK/MAPK cascade requires endocytosis and enclocytic recycling. The data also suggest a mechanism for returning Raf-1 to the cytosol after plasma membrane recruitment.
Resumo:
To test the hypothesis that Vegf-B contributes to the pulmonary vascular remodelling, and the associated pulmonary hypertension, induced by exposure of mice to chronic hypoxia. Methods: Right ventricular systolic pressure, the ratio of right ventricle/[left ventricle+septum] (RV/[LV+S]) and the thickness of the media (relative to vessel diameter) of intralobar pulmonary arteries (o.d. 50-150 and 151-420 mum) were determined in Vegfb knockout mice (Vegfb(-/-); n=17) and corresponding wild-type mice (Vegfb(+/+); n=17) exposed to chronic hypoxia (10% oxygen) or housed in room air (normoxia) for 4 weeks. Results: In Vegfb(+/+) mice hypoxia caused (i) pulmonary hypertension (a 70% increase in right ventricular systolic pressure compared with normoxic Vegfb(+/+) mice; P
Differential expression and distribution of syndecan-1 and-2 in periodontal wound healing of the rat
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell-cell and cell-matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell-cell and cell-matrix interactions, while syndecan-2 showed a predilection to associate with cell-matrix interactions during hard tissue formation.
Resumo:
In the present survey, we identified most of the genes involved in the receptor tyrosine kinase (RTK), mitogen activated protein kinase (MAPK) and Notch signaling pathways in the draft genome sequence of Ciona intestinalis, a basal chordate. Compared to vertebrates, most of the genes found in the Ciona genome had fewer paralogues, although several genes including ephrin, Eph and fringe appeared to have multiplied or duplicated independently in the ascidian genome. In contrast, some genes including kit/flt, PDGF and Trk receptor tyrosine kinases were not found in the present survey, suggesting that these genes are innovations in the vertebrate lineage or lost in the ascidian lineage. The gene set identified in the present analysis provides an insight into genes for the RTK, MAPK and Notch signaling pathways in the ancient chordate genome and thereby how chordates evolved these signaling pathway.
Resumo:
The mechanisms involved in angiotensin II type 1 receptor (AT(1)-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT(1)-R is not concentrated in caveolae but is clustered in cholesterol-independent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT(1)-R in caveolae, AT(1)-R. caveolin complexes are readily detectable in cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT(1)-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT(1)-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT(1)-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT(1)-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT(1)-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT(1)-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT(1)-R through the exocytic pathway, but this does not result in AT(1)-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT(1)-R.
Resumo:
WT1 encodes a transcription factor involved in kidney development and tumorigenesis. Using representational difference analysis, we identified a new set of WT1 targets, including a homologue of the Drosophila receptor tyrosine kinase regulator, sprouty. Sprouty1 was up-regulated in cell lines expressing wild-type but not mutant WT1. WT1 bound to the endogenous sprouty1 promoter in vivo and directly regulated sprouty1 through an early growth response gene-1 binding site. Expression of Sprouty1 and WT1 overlapped in the developing metanephric mesenchyme, and Sprouty1, like WT1, plays a key role in the early steps of glomerulus formation. Disruption of Sprouty1 expression in embryonic kidney explants by antisense oligonucleotides reduced condensation of the metanephric mesenchyme, leading to a decreased number of glomeruli. In addition, sprouty1 was expressed in the ureteric tree and antisense-treated ureteric trees had cystic lumens. Therefore, sprouty1 represents a physiologically relevant target gene of WT1 during kidney development.
Resumo:
Monoclonal antibody (MAb) 263 is a widely used monoclonal antibody that recognizes the extracellular domain (ECD) of the GH receptor. It has been shown to act as a GH agonist both in vitro and in vivo, and we report here that it must be divalent to exert its effect on the full-length receptor. To understand the mechanism of its agonist action, we have determined the precise epitope for this antibody using a novel random PCR mutagenesis approach together with expression screening in yeast. A library of 5200 clones of rabbit GH receptor ECD mutants were screened both with MAb 263 and with an anticarboxy-tag antibody to verify complete ECD expression. Sequencing for clones that expressed complete ECD but were not MAb 263 positive identified 20 epitope residues distributed in a discontinuous manner throughout the ECD. The major part of the epitope, as revealed after mapping onto the crystal structure model of the ECD molecule, was located on the side and upper portion of domain 1, particularly within the D - E strand disulfide loop 79 - 96. Molecular dynamics docking of an antibody of the same isotype as MAb 263 was used to dock the bivalent antibody to the 1528-Angstrom(2) epitope and to visualize the likely consequences of MAb binding. The minimized model enables the antibody to grasp two receptors in a pincer-like movement from opposite sides, facilitating alignment of the receptor dimerization domains in a manner similar to, but not identical with, GH.
Resumo:
Purpose: Vascular endothelial growth factor-A (VEGF-A) is crucial to retinal vascular growth, both normal and pathological. VEGF-B, recently characterized, is reported to be expressed in retinal tissues, but the importance of VEGF-B to retinal vascular development remained unknown. The aim of this study was to analyse retinal vascular growth in the Vegfb (-/-) knockout mouse. Methods: Retinal vascular growth was measured in Vegfb (-/-) knockout mice raised under normal conditions, and Vegfb (-/-) knockout mice with an oxygen-induced proliferative retinopathy. Wild type Vegfb (+/+) mice served as controls. Vessels were perfused with ink and retinal flatmounts secondarily labelled with FITC-lectin (BS-1, Griffonia simplicifolia ). Area and diameter of retinal growth and retinal vascular growth were recorded over days 0-20, and capillary density and mean diameter recorded from day 17 pups. Results: A variety of techniques confirmed that Vegfb (+/+) mice expressed VEGF-B and that VEGF-B expression was absent in Vegfb (-/-) mice. Vegfb (-/-) mice raised in room air showed no significant differences from Vegfb (+/+) controls. No differences were found in oxygen-induced retinopathy between Vegfb (-/-) and Vegfb (+/+) pups in either the extent of the initial oxygen-induced ablation, or in the regrowth of retinal vessels or vitreal (neovascular) sprouts; vitreal sprouts are important markers of the abnormal proliferative response, and are maximally expressed on day 17 in this model of oxygen-induced retinopathy. Conclusions: These results indicate that a lack of VEGF-B does not significantly affect development of the retinal vasculature under normal conditions, nor does it appear to affect the proliferative retinal responses seen in oxygen-induced retinopathy.
Gene expression during early ascidian metamorphosis requires signaling by Hemps, an EGF-like protein
Resumo:
Hemps, a novel epidermal growth factor (EGF)-like protein, is expressed during larval development and early metamorphosis in the ascidian Herdmania curvata and plays a direct role in triggering metamorphosis. In order to identify downstream genes in the Hemps pathway we used a gene expression profiling approach, in which we compared post-larvae undergoing normal metamorphosis with larval metamorphosis blocked with an anti-Hemps antibody. Molecular profiling revealed that there are dynamic changes in gene expression within the first 30 minutes of normal metamorphosis with a significant portion of the genome (approximately 49%) being activated or repressed. A more detailed analysis of the expression of 15 of these differentially expressed genes through embryogenesis, larval development and metamorphosis revealed that while there is a diversity of temporal expression patterns, a number of genes are transiently expressed during larval development and metamorphosis. These and other differentially expressed genes were localised to a range of specific cell and tissue types in Herdmania larvae and post-larvae. The expression of approximately 24% of the genes that were differentially expressed during early metamorphosis was affected in larvae treated with the anti-Hemps antibody. Knockdown of Hemps activity affected the expression of a range of genes within 30 minutes of induction, suggesting that the Hemps pathway directly regulates early response genes at metamorphosis. In most cases, it appears that the Hemps pathway contributes to the modulation of gene expression, rather than initial gene activation or repression. A total of 151 genes that displayed the greatest alterations in expression in response to anti-Hemps antibody were sequenced. These genes were implicated in a range of developmental and physiological roles, including innate immunity, signal transduction and in the regulation of gene transcription. These results suggest that there is significant gene activity during the very early stages of H. curvata metamorphosis and that the Hemps pathway plays a key role in regulating the expression of many of these genes.
Resumo:
Obesity, with its related problems, is recognized as the fastest growing disease epidemic facing the world, yet we still have limited insight into the regulation of adipose tissue mass in humans. We have previously shown that adipose-derived microvascular endothelial cells (MVECs) secrete a factor(s) that increases proliferation of human preadipocytes. We now demonstrate that coculture of human preadipocytes with MVECs significantly increases preadipocyte differentiation, evidenced by dramatically increased triacylglycerol accumulation and glycerol-3-phosphate dehydrogenase activity compared with controls. Subsequent analysis identified fibroblast growth factor (FGF)-1 as an adipogenic factor produced by MVECs. Expression of FGF-1 was demonstrated in MVECs but not in preadipocytes, while preadipocytes were shown to express FGF receptors 1-4. The proliferative effect of MVECs on human preadipocytes was blocked using a neutralizing antibody specific for FGF-1. Pharmacological inhibition of FGF-1 signaling at multiple steps inhibits preadipocyte replication and differentiation, supporting the key adipogenic role of FGF-1. We also show that 3T3-L1 cells, a highly efficient murine model of adipogenesis, express FGF-1 and, unlike human preadipocytes, display no increased differentiation potential in response to exogenous FGF-1. Conversely, FGF-1-treated human preadipocytes proliferate rapidly and differentiate with high efficiency in a manner characteristic of 3T3-L1 cells. We therefore suggest that FGF-1 is a key human adipogenic factor, and these data expand our understanding of human fat tissue growth and have significant potential for development of novel therapeutic strategies in the prevention and management of human obesity.
Resumo:
The receptor protein tyrosine phosphatase density-enhanced phosphatase-1 (DEP-1) has been implicated in aberrant cancer cell growth and immune cell function, however, its function within cells has yet to be properly elucidated. To investigate the cellular function of DEP-1, stable cell lines inducibly expressing DEP-1 were generated. Induction of DEP-1 expression was found to decrease PDGF-stimulated tyrosine phosphorylation of a number of cellular proteins including the PDGF receptor, and to inhibit growth factor-stimulated phosphorylation of components of the MAPK pathway, indicating that DEP-1 antagonised PDGF receptor signalling. This was supported by data showing that DEP-1 expression resulted in a reduction in cell proliferation. DEP-1-expressing cells had fewer actin-containing microfilament bundles, reduced vinculin and paxillin-containing adhesion plaques, and were defective in interactions with fibronectin. Defective cell-substratum adhesion correlated with lack of activation of FAK in DEP-1-expressing cells. Time-lapse interference reflection microscopy of live cells revealed that although small focal contacts at the leading edge were generated in DEP-1-expressing cells, they failed to mature into stable focal adhesions, as found in control cells. Further motility analysis revealed that DEP-1-expressing cells retained limited random motility, but showed no chemotaxis towards a gradient of PDGF. In addition, cell-cell contacts were disrupted, with a change in the localisation of cadherin from discrete areas of cell-cell contact to large areas of membrane interaction, and there was a parallel redistribution of beta-catenin. These results demonstrate that DEP-1 is a negative regulator of cell proliferation, cell-substratum contacts, motility and chemotaxis in fibroblasts.
Resumo:
Signals generated in response to extracellular stimuli at the plasma membrane are transmitted through cytoplasmic transduction cascades to the nucleus. We report the identification of a pathway directly linking the small GTPase Rab5, a key regulator of endocytosis, to signal transduction and mitogenesis. This pathway operates via APPL1 and APPL2, two Rab5 effectors, which reside on a subpopulation of endosomes. In response to extracellular stimuli such as EGF and oxidative stress, APPL1 translocates from the membranes to the nucleus where it interacts with the nucleosome remodeling and histone deacetylase multiprotein complex NuRD/MeCP1, an established regulator of chromatin structure and gene expression. Both APPL1 and APPL2 are essential for cell proliferation and their function requires Rab5 binding. Our findings identify an endosomal compartment bearing Rab5 and APPL proteins as an intermediate in signaling between the plasma membrane and the nucleus.
Resumo:
N4WBP5A (Ndfip2) belongs to an evolutionarily conserved group of Nedd4-interacting proteins with two homologues in mammalian species. We have previously shown that N4WBP5A expression in Xenopus oocytes results in increased cell-surface expression of the epithelial sodium channel. N4WBPs are characterized by one or two amino terminal PPxY motifs and three transmembrane domains. Here we show that both PPxY motifs of N4WBP5A mediate interaction with WW domains of Nedd4 and that N4WBP5A can physically interact with the WW domains of several Nedd4-family proteins. N4WBP5A is ubiquitinated and ubiquitination does not significantly affect the turnover of N4WBP5A protein. Ubiquitination of N4WBP5A is enhanced by Nedd4 and Nedd4-2 expression. N4WBP5A localizes to the Golgi, vesicles associated with the Golgi complex and to multivesicular bodies. We show that the ectopic expression of N4WBP5A inhibits receptor-mediated endocytosis of labelled epidermal growth factor. N4WBP5A overexpression inhibits accumulation of EGF in large endocytic/lysosomal vesicles suggestive of a role for N4WBP5A in protein trafficking. We propose that N4WBP5A acts as an adaptor to recruit Nedd4 family ubiquitin-protein ligases to the protein trafficking machinery.