143 resultados para Engineering Systems
Resumo:
In this work, a working model is proposed of molecular sieve silica (MSS) multistage membrane systems for CO cleanup at high temperatures (up to 500 degrees C) in a simulated fuel cell fuel processing system. Gases are described as having little interactions with each other relative to the pore walls due to low isosteric heat of adsorption on silica surfaces and high temperatures. The Arrhenius function for activated transport of pure gases was used to predict mixture concentration in the permeate and retentate streams. Simulation predicted CO could be reduced to levels below the required 50 ppmv for polymer electrolyte membrane fuel cell anodes at a stage H-2/CO selectivity of higher than 40 in 4 series membrane units. Experimental validation showed predicting mixture concentrations required only pure gas permeation data. This model has significant application for setting industrial stretch targets and as a robust basis for complex membrane model configurations. (c) 2006 American Institute of Chemical Engineers.
Resumo:
Enhanced biological phosphorus removal (EBPR) is a widely used process for achieving phosphorus removal from wastewater. A potential reason for EBPR failure is the undesirable growth of glycogen accumulating organisms (GAOs), which can compete for carbon sources with the bacterial group responsible for phosphorus removal from wastewater: the polyphosphate accumulating organisms (PAOs). This study investigates the impact of carbon source on EBPR performance and the competition between PAOs and GAOs. Two sequencing batch reactors (SBRs) were operated during a 4-6 month period and fed with a media containing acetate or propionate, respectively, as the sole carbon source. It was found that the acetate fed SBR rarely achieved a high level of phosphorus removal, and that a large portion of the microbial community was comprised of Candidatus Competibacter phosphatis, a known GAO. The propionate fed SBR, however, achieved stable phosphorus removal throughout the study, apart from one brief disturbance. The bacterial community of the propionate fed SBR was dominated by Candidatus Accumulibacter phosphatis, a known PAO, and did not contain Competibacter In a separate experiment, another SBR was seeded with a mixture of PAOs and a group of alphaproteobacterial GAOs, both enriched with propionate as the sole carbon source. Stable EBPR was achieved and the PAO population increased while the GAOs appeared to be out-competed. The results of this paper suggest that propionate may provide PAOs with a selective advantage over GAOs in the PAO-GAO competition, particularly through the minimisation of Competibacter Propionate may be a more suitable substrate than acetate for enhancing phosphorus removal in EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An innovative method for modelling biological processes under anaerobic conditions is presented and discussed. The method is based on titrimetric and off-gas measurements. Titrimetric data is recorded as the addition rate of hydroxyl ions or protons that is required to maintain pH in a bioreactor at a constant level. An off-gas analysis arrangement measures, among other things, the transfer rate of carbon dioxide. The integration of these signals results in a continuous signal which is solely related to the biological reactions. When coupled with a mathematical model of the biological reactions, the signal allows a detailed characterisation of these reactions, which would otherwise be difficult to achieve. Two applications of the method to the enhanced biological phosphorus removal processes are presented and discussed to demonstrate the principle and effectiveness of the method.
Resumo:
Real-time software systems are rarely developed once and left to run. They are subject to changes of requirements as the applications they support expand, and they commonly outlive the platforms they were designed to run on. A successful real-time system is duplicated and adapted to a variety of applications - it becomes a product line. Current methods for real-time software development are commonly based on low-level programming languages and involve considerable duplication of effort when a similar system is to be developed or the hardware platform changes. To provide more dependable, flexible and maintainable real-time systems at a lower cost what is needed is a platform-independent approach to real-time systems development. The development process is composed of two phases: a platform-independent phase, that defines the desired system behaviour and develops a platform-independent design and implementation, and a platform-dependent phase that maps the implementation onto the target platform. The last phase should be highly automated. For critical systems, assessing dependability is crucial. The partitioning into platform dependent and independent phases has to support verification of system properties through both phases.
Resumo:
This paper presents a formal framework for modelling and analysing mobile systems. The framework comprises a collection of models of the dominant design paradigms which are readily extended to incorporate details of particular technologies, i.e., programming languages and their run-time support, and applications. The modelling language is Object-Z, an extension of the well-known Z specification language with explicit support for object-oriented concepts. Its support for object orientation makes Object-Z particularly suited to our task. The system structuring techniques offered by object-orientation are well suited to modelling mobile systems. In addition, inheritance and polymorphism allow us to exploit commonalities in mobile systems by defining more complex models in terms of simpler ones.
Resumo:
The structure of a comprehensive research project into mine fires study applying the Ventgraph mine fire simulation software, preplanning of escape scenarios and general interaction with rescue responses is outlined. The project has Australian Coal Association Research Program (ACARP) funding and also relies on substantial mining company site support. This practical input from mine operators is essential and allows the approach to be introduced in the most creditable way. The effort is built around the introduction of fire simulation computer software to the Australian mining industry and the consequent modelling of fire scenarios in selected different mine layouts. Application of the simulation software package to the changing mine layouts requires experience to achieve realistic outcomes. Most Australian mines of size currently use a ventilation network simulation program. Under the project a small subroutine has been written to transfer the input data from the existing mine ventilation network simulation program to ‘Ventgraph’. This has been tested successfully. To understand fire simulation behaviour on the mine ventilation system, it is necessary to understood the possible effects of mine fires on various mine ventilation systems correctly first. Case studies demonstrating the possible effects of fires on some typical Australian coal mine ventilation circuits have been examined. The situation in which there is some gas make at the face and effects with fire have also been developed to emphasise how unstable and dangerous situations may arise. The primary objective of the part of the study described in this paper is to use mine fire simulation software to gain better understanding of how spontaneous combustion initiated fires can interact with the complex ventilation behaviour underground during a substantial fire. It focuses on the simulation of spontaneous combustion sourced heatings that develop into open fires. Further, it examines ventilation behaviour effects of spontaneous combustion initiated pillar fires and examines the difficulties these can be present if a ventilation reversal occurs. It also briefly examines simulation of use of the inertisation to assist in mine recovery. Mine fires are recognised across the world as a major hazard issue. New approaches allowing improvement in understanding their consequences have been developed as an aid in handling this complex area.