97 resultados para Electron-transfer Reactions
Resumo:
The aim of this research was to examine, from a stress and coping perspective, the effects of resources (both personal and environmental) and coping strategies on parental reactions to infant death. One hundred and twenty-seven parents (60 fathers, 67 mothers) participated in the study. The predictors of parental distress (background factors, resources, coping methods) were initially assessed at 4-6 weeks post-loss. Parental distress (assessed using a composite measure of psychiatric disturbance, physical symptoms, and perinatal grief) was further assessed at 6 months post-loss and at 15 months postloss. After control for the stability in adjustment across time, there was consistent evidence that higher levels of education were associated with lower levels of parental distress over time. Among mothers, the number of friends in whom mothers had the confidence to confide emerged as a positive predictor of adjustment to infant death. A reliance on problem-focused coping was associated with greater maternal distress at 6 months post-loss, whereas coping by seeking support was associated with less distress at 15 months post-loss. There is no evidence that background factors and resources influenced parental distress through coping.
Resumo:
The bis(mu-hydroxo) complex [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)](PF6)(2) (Me-2[9]aneN(2)S = N,N'-dimethyl-1-thia-4,7-diazacyclononane) results after reaction of [Cu(Me-2[9]aneN(2)S)(MeCN)] (PF6) with dioxygen at -78 degrees C in acetonitrile. The complex has been characterized by X-ray crystallography: orthorhombic, space group Pnma, with a 18.710(3), b 16.758(2), c 9.593(2) Angstrom, and Z = 4. The structure refined to a final R value of 0.051. The complex contains two copper(II) ions bridged by two hydroxo groups with Cu ... Cu 2.866(1) Angstrom. The solid-state magnetic susceptibility study reveals ferromagnetic coupling, the fitting parameters being J = +46+/-5 cm(-1), g = 2.01+/-0.01 and theta = -0.58+/-0.03 K. The frozen-solution e.p.r. spectrum in dimethyl sulfoxide is characteristic of a monomeric copper(II) ion (g(parallel to) 2.300, g(perpendicular to) 2.063; A(parallel to) 156.2 x 10(-4) cm(-1), A(perpendicular to) 9.0 x 10(-4) cm(-1)) with an N2O2 donor set. Thioether coordination to the copper(II) in solution is supported by the presence of an intense absorption assigned to a sigma(S)-->Cu-II LMCT transition at c. 34000 cm(-1). The single-crystal spectrum of [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)] (PF6)(2) (273 K) reveals d-->d transitions at 14500 and 18300 cm(-1) and a weak pi(S)-->Cu-II charge-transfer band at approximately 25000 cm(-1).
Resumo:
Preparation of a series of specific penta- and tetra-amine derivatives of Co-III and Cr-III with a neutral leaving ligand has been carried out in order to accomplish a fine tuning of the associativeness/dissociativeness of their substitution reactions. Spontaneous aquation reactions of the neutral ligands have been studied at variable temperature and pressure. Although rate constants and thermal activation parameters show an important degree of scatter, the values determined for the activation volumes of the substitution process illustrate the mechanistic fine tuning that may be achieved for these reactions. In all cases, in the absence of important steric constraints in the molecule, electronic inductive effects seem to be the most important factor accounting for the dissociative shifts observed both for pentaamine (i.e.Delta V double dagger=+4.0 or +14.0 cm(3) mol(-1) and +5.2 or +16.5 cm(3) mol(-1) for the aquation of cis- or trans-[Co(MeNH2)(NH3)(4)(DMF)](3+) and cis- or trans-[CoL15(DMF)](3+) respectively, where L-15 represents a pentaamine macrocyclic ligand), and tetraamine systems (i.e.Delta V double dagger=+4.1 or +8.4 cm(3) mol(-1) and -10.8 or -7.4 cm(3) mol(-1) for the aquation of cis-[Co(NH3)(4)Cl(DMAC)](2+) (DMAC=dimethylacetamide) or cis-[Co(en)(2)Cl(DMAC)](2+) and cis-[Cr(NH3)(4)Cl(DMF)](2+) or cis -[Cr(en)(2)Cl(DMF)](2+)). From the results, clear evidence is obtained which indicates that, only when the situation is borderline I-a/I-d, or the steric demands are increased dramatically, dissociative shifts are observed; in all other cases electronic inductive effects seem to be dominant for such a tuning of the substitution process.
Resumo:
We present a method for measuring single spins embedded in a solid by probing two-electron systems with a single-electron transistor (SET). Restrictions imposed by the Pauli principle on allowed two-electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2, interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single-electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.
Resumo:
We use the finite element method to model and predict the dissipative structures of chemical species for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. In particular, we explore the conditions under which dissipative structures of the species may exist in the Brusselator type of nonequilibrium chemical reaction. Since this is the first time the finite element method and related strategies have been used to study the chemical instability problems in a fluid-saturated porous medium, it is essential to validate the method and strategies before they are put into application. For this purpose, we have rigorously derived the analytical solutions for dissipative structures of chemical species in a benchmark problem, which geometrically is a square. Comparison of the numerical solutions with the analytical ones demonstrates that the proposed numerical method and strategy are robust enough to solve chemical instability problems in a fluid-saturated porous medium. Finally, the related numerical results from two application examples indicate that both the regime and the magnitude of pore-fluid flow have significant effects on the nature of the dissipative structures that developed for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. The motivation for this study is that self-organization under conditions of pore-fluid flow in a porous medium is a potential mechanism of the orebody formation and mineralization in the upper crust of the Earth. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We use the finite element method to solve the coupled problem between convective pore-fluid flow, heat transfer and mineralization in layered hydrothermal systems with upward throughflow. In particular, we present the improved rock alteration index (IRAI) concept for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in the systems. To validate the numerical method used in the computation, analytical solutions to a benchmark problem have been derived. After the numerical method is validated, it is used to investigate the pattern of pore-fluid Aom, the distribution of temperature and the mineralization pattern of gold minerals in a layered hydrothermal system with upward throughflow. The related numerical results have demonstrated that the present concept of IRAI is useful and applicable for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in hydrothermal systems. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A variety of adhesive support-films were tested for their ability to adhere various biological specimens for transmission electron microscopy. Support films primed with 3-amino-propyl triethoxy silane (APTES), poly-L-lysine, carbon and ultraviolet-B (UV-B)-irradiated carbon were tested for their ability to adhere a variety of biological specimens including axenic cultures of Bacillus subtilis and Escherichia coli and wild-type magnetotactic bacteria. The effects of UV-B irradiation on the support film in the presence of air and electrostatic charge on primer deposition were tested and the stability of adhered specimens on various surfaces was also compared. APTES-primed UV-B-irradiated Pioloform(TM) was consistently the best adhesive, especially for large cells, and when adhered specimens were UV-B irradiated they became remarkably stable under an electron beam. This assisted the acquisition of in situ phase-contrast lattice images from a variety of biominerals in magnetotactic bacteria, in particular metastable greigite magnetosomes. Washing tests indicated that specimens adhering to APTES-primed UV-B-irradiated Pioloform(TM) were covalently coupled. The electron beam stability was hypothesised to be the result of mechanical strengthening of the specimen and support film and the reduced electrical resistance in the specimen and support film due to their polymerization and covalent coupling.
Resumo:
We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of internal states that can be completely decoupled fi om the dissipative interactions (responsible for decoherence) and an external driving laser field. These superpositions, known as dark or trapping states, can he completely stable or can coherently interact with the remaining states. We examine the master equation describing the dissipative evolution of the system and identify conditions for population trapping and also classify processes that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay rates. in particular, we find that the trapping conditions can involve both coherent and dissipative interactions, and depending on the energy level structure of the system, the population can be trapped in a linear superposition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external fields or, in some cases. in one of the excited states of the system. A comprehensive analysis is presented of the different processes that are responsible for population trapping, and we illustrate these ideas with three examples of two coupled systems: single V- and Lambda-type three-level atoms and two nonidentical tao-level atoms, which are known to exhibit dark states. We show that the effect of population trapping does not necessarily require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the vacuum-induced coherent coupling between the systems could be easily observed in Lambda-type atoms. Our analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a maximally entangled state which is completely decoupled from the dissipative interaction.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
Overcoming the phenomenon known as difficult synthetic sequences has been a major goal in solid-phase peptide synthesis for over 30 years. In this work the advantages of amide backbone-substitution in the solid-phase synthesis of difficult peptides are augmented by developing an activated N-alpha-acyl transfer auxiliary. Apart from disrupting troublesome intermolecular hydrogen-bonding networks, the primary function of the activated N-alpha-auxiliary was to facilitate clean and efficient acyl capture of large or beta-branched amino acids and improve acyl transfer yields to the secondary N-alpha-amine. We found o-hydroxyl-substituted nitrobenzyl (Hnb) groups were suitable N-alpha-auxiliaries for this purpose. The relative acyl transfer efficiency of the Hnb auxiliary was superior to the 2-hydroxy-4-methoxybenzyl (Hmb) auxiliary with protected amino acids of varying size. Significantly, this difference in efficiency was more pronounced between more sterically demanding amino acids. The Hnb auxiliary is readily incorporated at the N-alpha-amine during SPPS by reductive alkylation of its corresponding benzaldehyde derivative and conveniently removed by mild photolysis at 366 nm. The usefulness of the Hnb auxiliary for the improvement of coupling efficiencies in the chain-assembly of difficult peptides was demonstrated by the efficient Hnb-assisted Fmoc solid-phase synthesis of a known hindered difficult peptide sequence, STAT-91. This work suggests the Hnb auxiliary will significantly enhance our ability to synthesize difficult polypeptides and increases the applicability of amide-backbone substitution.
Resumo:
The substitution reactions of SMe2 by phosphines (PMePh2, PEtPh2, PPh3, P(4-MeC6H4)(3), P(3-MeC6H4)(3), PCy3) on Pt-IV complexes having a cyclometalated imine ligand, two methyl groups in a cis-geometrical arrangement, a halogen, and a dimethyl sulfide as ligands, [Pt(CN)(CH3)(2)(X)(SMe2)], have been studied as a function of temperature, solvent, and electronic and steric characteristics of the phosphines and the X and CN ligands. In all cases, a limiting dissociative mechanism has been found, where the dissociation of the SMe2 ligand corresponds to the rate-determining step. The pentacoordinated species formed behaves as a true pentacoordinated Pt-IV compound in a steady-state concentration, given the solvent independence of the rate constant. The X-ray crystal structures of two of the dimethyl sulfide complexes and a derivative of the pentacoordinate intermediate have been determined. Differences in the individual rate constants for the entrance of the phosphine ligand can only be estimated as reactivity ratios. In all cases an effect of the phosphine size is detected, indicating that an associative step takes place from the pentacoordinated intermediate. The nature of the (CN) imine and X ligands produces differences in the dimethyl sulfide dissociation reactions rates, which can be quantified by the corresponding DeltaS double dagger values (72, 64, 48, 31, and 78 J K-1 mol(-1) for CN/X being C6H4CHNCH2C6H5/Br, C6H4CHNCH2-(2,4,6-(CH3)(3))C6H2/Br, C6H4CHNCH2C6H5/Cl, C6Cl4CHNCH2C6H5/Cl, and C6W4CH2NCHC6H5/ Pr, respectively). As a whole, the donor character of the coordinated C-aromatic and X atoms have the greatest influence on the dissociativeness of the rate-determining step.
Resumo:
Previous experimental studies showed that the presence of O-2 greatly enhances NO-carbon reaction while it depresses N2O-carbon reaction on carbon surfaces. A popular explanation for the rate increase is that the addition of O-2 results in a large number of reactive carbon-oxygen complexes, and decomposition of these complexes produces many more active sites. The explanation for the latter is that excess O-2 simply blocks the active sites, thus reducing the rate of N2O-carbon reaction. The contradiction is that O-2 can also occupy active sites in NO-carbon reaction and produce active sites in N2O-carbon reduction. By using ab initio calculation, we find that the opposite roles of O-2 are caused by the different manners of N2O and NO adsorption on the carbon surface. In the presence of excess O-2, most Of the active sites are occupied by oxygen groups. In the competition for the remaining active sites, NO is more likely to chemisorb in the form of NO2 and NO chemisorption is mon thermodynamically favorable than O-2 chemisorption. By contrast, the presence of excess O-2 makes N2O chemisorption much less thermally stable either on the consecutive edge sites or edge sites isolated by semiquinone oxygen. A detailed analysis and discussion of the reaction mechanism of N-2 formation from NO- and N2O-carbon reaction in the presence of O-2 is presented in this paper.
Resumo:
In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Extensive research conducted in the occupational stress literature has failed to provide convincing support for the stress-buffering effects of work control on employee adjustment. Drawing on research conducted in the laboratory context, it was proposed that the stress-buffering effects of work control on employee adjustment would be more marked at high, rather than low, levels of self-efficacy. In a sample of 100 customer service representatives, a significant three-way interaction among role conflict, work control and self-efficacy (measured at Time 1) was observed on (low) depersonalization (measured at Time 2). Consistent with expectations, work control reduced the negative effects of work stress on this outcome measure only for employees who perceived high levels of self-efficacy at work. In addition, there was evidence to suggest that self-efficacy moderated the main effects of work control on job satisfaction and somatic health. These findings are discussed hi terms of their theoretical contribution to the job strain model, and also in relation to workplace interventions designed to improve levels of employee adjustment.
Resumo:
A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying U-q(sl (2/1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.