88 resultados para Driving ability
Resumo:
Achievement goal orientation represents an individual's general approach to an achievement situation, and has important implications for how individuals react to novel, challenging tasks. However, theorists such as Yeo and Neal (2004) have suggested that the effects of goal orientation may emerge over time. Bell and Kozlowski (2002) have further argued that these effects may be moderated by individual ability. The current study tested the dynamic effects of a new 2x2 model of goal orientation (mastery/performance x approach/avoidance) on performance on a simulated air traffic control (ATC) task, as moderated by dynamic spatial ability. One hundred and one first-year participants completed a self-report goal orientation measure and computerbased dynamic spatial ability test and performed 30 trials of an ATC task. Hypotheses were tested using a two-level hierarchical linear model. Mastery-approach orientation was positively related to task performance, although no interaction with ability was observed. Performance-avoidance orientation was negatively related to task performance; this association was weaker at high levels of ability. Theoretical and practical implications will be discussed.
Resumo:
Fuzzy signal detection analysis can be a useful complementary technique to traditional signal detection theory analysis methods, particularly in applied settings. For example, traffic situations are better conceived as being on a continuum from no potential for hazard to high potential, rather than either having potential or not having potential. This study examined the relative contribution of sensitivity and response bias to explaining differences in the hazard perception performance of novices and experienced drivers, and the effect of a training manipulation. Novice drivers and experienced drivers were compared (N = 64). Half the novices received training, while the experienced drivers and half the novices remained untrained. Participants completed a hazard perception test and rated potential for hazard in occluded scenes. The response latency of participants to the hazard perception test replicated previous findings of experienced/novice differences and trained/untrained differences. Fuzzy signal detection analysis of both the hazard perception task and the occluded rating task suggested that response bias may be more central to hazard perception test performance than sensitivity, with trained and experienced drivers responding faster and with a more liberal bias than untrained novices. Implications for driver training and the hazard perception test are discussed.