92 resultados para Disorders of metabolism
Resumo:
Primary immunodeficiency disorders in childhood usually present as unusual, recurrent or severe infections, symptomatic infections with organisms of low pathogenicity, or as recognizable syndromes which are known to have associated immunological abnormalities. In many of the primary immunodeficiency disorders, there are known patterns of inheritance, and other family members may be affected. Some primary immunodeficiency disorders are relatively common, such as selective IgA deficiency, and often do not lead to major morbidity. Others, such as the severe combined immune deficiency syndromes, are relatively rare, and are fatal in early life if not recognized and treated early. Diagnosis of a primary immunodeficiency disorder depends on appropriate use of laboratory investigations. Often there will be abnormalities detected on a complete blood film and measurement of immunoglobulin isotypes. More complex investigations should be undertaken in conjunction with a paediatric immunology service. In recent years, many of the clinically defined primary immunodeficiency disorders have been shown to have associated specific gene defects. For some, this has led to the identification and characterization of defective or absent gene products. The consequences of this new knowledge are more accurate diagnosis, early diagnosis including antenatal diagnosis, detection of undiagnosed disease in other family members, and the potential for new therapies including gene or gene product therapy.
Resumo:
Background: Supplementation with propionyl-L-carnitine (PLC) may be of use in improving the exercise capacity of people with peripheral arterial disease. Methods: After a 2-wk exercise familiarization phase, seven subjects displaying intermittent claudication were studied over a 12-wk period consisting of three 4-wk phases, baseline (B), supplementation (S), and placebo (P). PLC was supplemented at 2 g(.)d(-1), and subjects were blinded to the order of supplementation. Unilateral calf strength and endurance were assessed weekly. Walking performance was assessed at the end of each phase using an incremental protocol, during which respiratory gases were collected. Results: Although there was not a significant increase in maximal walking time (similar to 14%) in the whole group, walking time improved to a greater extent than the individual baseline coefficient of variation in four of the seven subjects. The changes in walking performance were correlated with changes in the respiratory exchange ratio both at steady state (r = 0.59) and maximal exercise (r = 0.79). Muscle strength increased significantly from 695 +/- 198 N to 812 +/- 249 N by the end of S. Changes in calf strength from B to S were modestly related to changes in walking performance (r = 0.56). No improvements in calf endurance were detected throughout the study. Conclusions: These preliminary data suggest that, in addition to walking performance, muscle strength can be increased in PAD patients after 4 wk of supplementation with propionyl-L-carnitine.
Resumo:
The Eph family (of receptor tyrosine kinases plays a crucial role during development and is implicated in oncogenesis. Using a partial cDNA clone of an Eph-related kinase (Esk) we isolated the complete coding region of a gene which we show to be murine EphA1 by both structural and functional criteria. The chromosomal localization is shown to be syntenic to hEphA1 and the genomic organization also shows distinct features found in the hEphA1 gene. Functionally, in keeping with findings for the human homologue, both soluble recombinant and native mEphA1 show preferential binding to ephrin A1. However, we also observed significant binding to other A-type ligands as has been observed for other Eph receptors. We analysed the expression of mEphA1 mRNA by in situ hybridization on tissue sections. mEphA1 was expressed in epithelial elements of skin, adult thymus, kidney and adrenal cortex. Taken together with previous Northern blotting data these results suggest that mEphA1 is expressed widely in differentiated epithelial cells.
Resumo:
The purpose of this study, was to develop a newborn piglet model of hypoxia/ischaemia which would better emulate the clinical situation in the asphyxiated human neonate and produce a consistent degree of histopathological injury following the insult. One-day-old piglets (n = 18) were anaesthetised with a mixture of propofol (10 mg/kg/h) and alfentinal (5,5.5 mug/kg/h) i.v. The piglets were intubated and ventilated. Physiological variables were monitored continuously. Hypoxia was induced by decreasing the inspired oxygen (FiO(2)) to 3-4% and adjusting FiO(2) to maintain the cerebral function monitor peak amplitude at less than or equal to5 muV. The duration of the mild insult was 20, min while the severe insult was 30 min which included 10 min where the blood pressure was allowed to fall below 70% of baseline. Control piglets (n=4 of 18) were subjected to the same protocol except for the hypoxic/ischaemic insult. The piglets were allowed to recover from anaesthesia then euthanased 72 It after the insult. The brains were perfusion-fixed, removed and embedded in paraffin. Coronal sections were stained by haematoxylin/eosin. A blinded observer examined the frontal and parietal cortex, hippocampus, basal ganglia, thalamus and cerebellum for the degree of damage. The total mean histology score for the five areas of the brain for the severe insult was 15.6 +/-4.4 (mean +/-S.D., n=7), whereas no damage was seen in either the mild insult (n=4) or control groups. This 'severe damage' model produces a consistent level of damage and will prove useful for examining potential neuroprotective therapies in the neonatal brain. (C) 2001 Elsevier Science BY. All rights reserved.
Resumo:
There have been few replicated examples of genotype x environment interaction effects on behavioral variation or risk of psychiatric disorder. We review some of the factors that have made detection of genotype x environment interaction effects difficult, and show how genotype x shared environment interaction (GxSE) effects are commonly confounded with genetic parameters in data from twin pairs reared together. Historic data on twin pairs reared apart can in principle be used to estimate such GxSE effects, but have rarely been used for this purpose. We illustrate this using previously published data from the Swedish Adoption Twin Study of Aging (SATSA), which suggest that GxSE effects could account for as much as 25% of the total variance in risk of becoming a regular smoker. Since few separated twin pairs will be available for study in the future, we also consider methods for modifying variance components linkage analysis to allow for environmental interactions with linked loci.
Resumo:
Expression of the mRNAs encoding the astrocytic (EAAT1, EAAT2) and neuronal (EAAT3, EAAT4) excitatory amino acid transporters and the AMPA-type glutamate receptor subunits GluR2 and GluR3 was investigated in postmortem cerebellar extracts from a patient with olivopontocerebellar atrophy (OPCA) and in material from three age-matched controls. Decreased expression in the steady state level of EAAT4 mRNA in the OPCA sample was correlated with the selective loss of Purkinje cells. Neuropathological evaluation revealed reactive gliosis and concomitantly increased expression of the mRNA encoding astrocytic glial fibrillary acidic protein (GFAP). Expression of the mRNAs encoding the AMPA receptor subunits GluR2 and GluR3 subunits was found to be decreased in OPCA suggesting that excitotoxic mechanism could play a role in the pathogenesis of the selective neuronal cell death in this disorder.
Resumo:
The interrelationship between myofibroblasts and fibrogenic growth factors in the pathogenesis of renal fibrosis is poorly defined. A temporal and spatial analysis of myofibroblasts, their proliferation and death, and presence of transforming growth factor-beta1 (TGF-beta1) and platelet-derived growth factor-B (PDGF-B) was carried out in an established rodent model in which chronic renal scarring and fibrosis occurs after healed renal papillary necrosis (RPN), similar to that seen with analgesic nephropathy. Treated and control groups (N = 6 and 4, respectively) were compared at 2, 4, 8 and 12 weeks. A positive relationship was found between presence of tubulo-interstitial myofibroblasts and development of fibrosis. Apoptotic myofibroblasts were identified in the interstitium and their incidence peaked 2 weeks after treatment. Levels of interstitial cell apoptosis and fibrosis were negatively correlated over time (r = -0.57, p < 0.01 ), suggesting that as apoptosis progressively failed to limit myofibroblast numbers, fibrosis increased. In comparison with the diminishing apoptosis in the interstitium, the tubular epithelium had progressively increasing levels of apoptosis over time, indicative of developing atrophy of nephrons. TGF-beta1 protein expression had a close spatial and temporal association with fibrosis and myofibroblasts, whilst PDGF-B appeared to have a closer link with populations of other chronic inflammatory cells such as infiltrating lymphocytes. Peritubular myofibroblasts were often seen near apoptotic cells in the tubular epithelium, suggestive of a paracrine toxic effect of factor/s secreted by the myofibroblasts. In vitro , TGF-beta1 was found to be toxic to renal tubular epithelial cells. These findings suggest an interaction between myofibroblasts, their deletion by apoptosis, and the presence of the fibrogenic growth factor TGF-beta1 in renal fibrosis, whereby apoptotic deletion of myofibroblasts could act as a controlling factor in progression of fibrosis.
Resumo:
Friedreich ataxia (FA) Is caused by decreased frataxin expression that results in mitochondrial iron (Fe) overload. However, the role of frataxin in mammalian Fe metabolism remains unclear. In this investigation we examined the function of frataxin in Fe metabolism by implementing a well-characterized model of erythroid differentiation, namely, Friend cells induced using dimethyl sulfoxide (DMSO). We have characterized the changes in frataxin expression compared to molecules that play key roles in Fe metabolism (the transferrin receptor [TfR] and the Fe transporter Nramp2) and hemoglobinization (beta-globin). DMSO induction of hemoglobinization results in a marked decrease in frataxin gene (Frda) expression and protein levels. To a lesser extent, Nramp2 messenger RNA (mRNA) levels were also decreased on erythroid differentiation, whereas TfR and beta-globin mRNA levels increased. Intracellular Fe depletion using desferrioxamine or pyridoxal isonicotinoyl hydrazone, which chelate cytoplasmic or cytoplasmic and mitochondrial Fe pools, respectively, have no effect on frataxin expression. Furthermore, cytoplasmic or mitochondrial Fe loading of induced Friend cells with ferric ammonium citrate, or the heme synthesis inhibitor, succinylacetone, respectively, also had no effect on frataxin expression. Although frataxin has been suggested by others to be a mitochondrial ferritin, the lack of effect of intracellular Fe levels on frataxin expression is not consistent with an Fe storage role. Significantly, protoporphyrin IX down-regulates frataxin protein levels, suggesting a regulatory role of frataxin in Fe or heme metabolism. Because decreased frataxin expression leads to mitochondrial Fe loading in FA, our data suggest that reduced frataxin expression during erythroid differentiation results in mitochondrial Fe sequestration for heme biosynthesis. (C) 2002 by The American Society of Hematology.
Resumo:
Aims To identify influences on the development of alcohol use disorders in a Thai population, particularly parental drinking and childhood environment. Design Case-control study. Setting A university hospital, a regional hospital and a community hospital in southern Thailand. Participants Ninety-one alcohol-dependents and 177 hazardous/harmful drinkers were recruited as cases and 144 non-or infrequent drinkers as controls. Measurements Data on parental drinking, family demographic characteristics, family activities, parental disciplinary practice, early religious life and conduct disorder were obtained using a structured interview questionnaire. The main outcome measure was the subject's classification as alcohol-dependent, hazardous/harmful drinker or non-/infrequent drinker. Findings A significant relationship was found between having a drinking father and the occurrence of hazardous/harmful drinking or alcohol dependence in the subjects. Childhood factors (conduct disorder and having been a temple boy, relative probability ratios, RPRs and 95% CI: 6.39, 2.81-14.55 and 2.21, 1.19-4.08, respectively) also significantly predicted alcohol dependence, while perceived poverty and ethnic alienation was reported less frequently by hazardous/harmful drinkers and alcohol-dependents (RPRS and 95% CIs = 0.34, 0.19-0.62 and 0.59, 0.38-0.93, respectively) than the controls. The relative probability ratio for the effect of the father's infrequent drinking on the son's alcohol dependence was 2.92 (95% CI = 1.42-6.02) and for the father's heavy or dependent drinking 2.84 (95% CI=1.31-6.15). Conclusions Being exposed to a light-drinking, father increases the risk of a son's alcohol use disorders exhibited either as hazardous-harmful or dependent drinking. However, exposure to a heavy- or dependent-drinking father is associated more uniquely with an increased risk of his son being alcohol-dependent. The extent to which this is seen in other cultures is worthy of exploration.
Clinical and non-clinical predictors of vocational recovery for Australians with psychotic disorders
Resumo:
Clinical and non-clinical predictors of vocational recovery were examined among 782 Australians diagnosed with DSM III R psychotic disorders, using data from the study on low-prevalence disorders, part of the National Survey of Mental Health and Wellbeing, Australia 1997-1998. Of the six significant clinical predictors, self-reported course of illness emerged as a potentially practical predictor of vocational recovery. Five non-clinical variables, age, education and skills, marital status, premorbid work adjustment, and use of a vocational service in the previous year, also contributed to the prediction of vocational recovery. The implications of these findings for both rehabilitation professionals and researchers are discussed.
Resumo:
Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2 mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2 mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24 h, The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity, Conversely, pro-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Drug prevention has traditionally focused on influencing individual attitudes and behaviours. In particular, efforts have been directed towards adolescents in the school setting. However, evaluations of school-based drug education have identified limited success. There is increasing recognition that drug abuse is one of a number of risk behaviours, including truancy, delinquency and mental health problems, which share common antecedents that begin in the early years of childhood. Furthermore, these behaviours are shaped by macroenvironmental influences including the economic, social, cultural, and physical environment. Drug prevention needs to adopt a broader perspective: with greater collaboration in related programmes such as crime prevention and suicide prevention; with greater attention to the macroenvironmental influences on problem behaviours; and with greater attention to healthy development in the first years of childhood. (C) 2002 Lippincott Williams Wilkins.
Resumo:
The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.
Resumo:
Although cytokinins (CKs) are widely thought to have a role in promoting shoot branching, there is little data supporting a causative or even a correlative relationship between endogenous CKs and timing of bud outgrowth. We previously showed that lateral bud CK content increased rapidly following shoot decapitation. However, it is not known whether roots are the source of this CK. Here, we have used shoot decapitation to instantaneously induce lateral bud release in chickpea seedlings. This treatment rapidly alters rate and direction of solvent and solute (including CK) trafficking, which may be a passive signalling mechanism central to initiation of lateral bud release. To evaluate changes in xylem transport, intact and decapitated plants were infiltrated with [H-3]zeatin riboside ([H-3]ZR), a water-soluble blue dye or [H-3]H2O by injection into the hypocotyl. All three tracers were recovered in virtually all parts of the shoot within I h of injection. In intact plants, solute accumulation in the lateral bud at node 1 was significantly less than in the adjacent stipule and nodal tissue. In decapitated plants, accumulation of [H-3]ZR and of blue dye in the same bud position was increased 3- to 10-fold relative to intact plants, whereas content of [H-3]H2O was greatly reduced indicating an increased solvent throughput. The stipule and cut stem, predicted to have high evapotranspiration rates, also showed increased solute content accompanied by enhanced depletion of [H-3]H2O. To assess whether metabolism modifies quantities of active CK reaching the buds, we followed the metabolic fate of [H-3]ZR injected at physiological concentrations. Within 1 h, 80-95% of [H-3]ZR was converted to other active CKs (mainly zeatin riboside-5'phosphate (ZRMP) and zeatin (Z)), other significant, but unconfirmed metabolites some of which may be active (O-acetylZR, O-acetylZRMP and a compound correlated with sites of high CK-concentrations) and inactive catabolites (adenosine, adenine, 5'AMP and water). Despite rapid metabolic degradation, the total active label, which was indicative of CK concentration in buds, increased rapidly following decapitation. It can be inferred that xylem sap CKs represent one source of active CKs appearing in lateral buds after shoot decapitation.
Will chymase inhibitors be the next major development for the treatment of cardiovascular disorders?
Resumo:
Chymase is contained in the secretory granules of mast cells. In addition to the synthesis of angiotensin II, chymase is involved in transforming growth factor-beta activation and cleaves Type I procollagen to produce collagen. NK301 and BCEAB are orally-active inhibitors of chymase. NK301 was tested in a dog model of vascular intimal hyperplasia after balloon injury and shown to reduce the increased chymase activity in the injured arteries and prevent intimal thickening. In a hamster model of cardiac fibrosis associated with cardiomyopathy, BCEAB reduced the increased cardiac chymase activity in cardiomyopathy and reduced fibrosis. Chymase inhibitors may be an important development for the treatment of cardiovascular injury associated with mast cell degranulation.