165 resultados para Discrete Mathematics and Combinatorics
Resumo:
We consider the construction of several configurations, including: • overlarge sets of 2-(11,5,2) designs, that is, partitions of the set of all 5-subsets of a 12-set into 72 2-(11,5,2) designs; • an indecomposable doubly overlarge set of 2-(11,5,2) designs, that is, a partition of two copies of the set of all 5-subsets of a 12-set into 144 2-(11,5,2) designs, such that the 144 designs can be arranged into a 12 × 12 square with interesting row and column properties; • a partition of the Steiner system S(5,6,12) into 12 disjoint 2-(11,6,3) designs arising from the diagonal of the square; • bidistant permutation arrays and generalized Room squares arising from the doubly overlarge set, and their relation to some new strongly regular graphs.
Resumo:
We study partitions of the set of all ((v)(3)) triples chosen from a v-set into pairwise disjoint planes with three points per line. Our partitions may contain copies of PG(2, 2) only (Fano partitions) or copies of AG(2, 3) only (affine partitions) or copies of some planes of each type (mixed partitions). We find necessary conditions for Fano or affine partitions to exist. Such partitions are already known in several cases: Fano partitions for v = 8 and affine partitions for v = 9 or 10. We construct such partitions for several sporadic orders, namely, Fano partitions for v = 14, 16, 22, 23, 28, and an affine partition for v = 18. Using these as starter partitions, we prove that Fano partitions exist for v = 7(n) + 1, 13(n) + 1, 27(n) + 1, and affine partitions for v = 8(n) + 1, 9(n) + 1, 17(n) + 1. In particular, both Fano and affine partitions exist for v = 3(6n) + 1. Using properties of 3-wise balanced designs, we extend these results to show that affine partitions also exist for v = 3(2n). Similarly, mixed partitions are shown to exist for v = 8(n), 9(n), 11(n) + 1.
Resumo:
A 4-cycle trade of volume t corresponds to a simple graph G without isolated vertices, where the edge set can be partitioned into t 4-cycles in at least two different ways such that the two collections of 4-cycles have no 4-cycles in common. The foundation of the trade is v = \V(G)\. This paper determines for which values oft and a there exists a 4-cycle trade of volume t and foundation v.
Resumo:
Difference equations which discretely approximate boundary value problems for second-order ordinary differential equations are analysed. It is well known that the existence of solutions to the continuous problem does not necessarily imply existence of solutions to the discrete problem and, even if solutions to the discrete problem are guaranteed, they may be unrelated and inapplicable to the continuous problem. Analogues to theorems for the continuous problem regarding a priori bounds and existence of solutions are formulated for the discrete problem. Solutions to the discrete problem are shown to converge to solutions of the continuous problem in an aggregate sense. An example which arises in the study of the finite deflections of an elastic string under a transverse load is investigated. The earlier results are applied to show the existence of a solution; the sufficient estimates on the step size are presented. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
For a design D, define spec(D) = {\M\ \ M is a minimal defining set of D} to be the spectrum of minimal defining sets of D. In this note we give bounds on the size of an element in spec(D) when D is a Steiner system. We also show that the spectrum of minimal defining sets of the Steiner triple system given by the points and lines of PG(3,2) equals {16,17,18,19,20,21,22}, and point out some open questions concerning the Steiner triple systems associated with PG(n, 2) in general. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The minimum number of incomplete blocks required to cover, exactly lambda times, all t-element subsets from a set V of cardinality v (v > t) is denoted by y(lambda, t; v). The value of g(2, 2; v) is known for v = 3, 4,..., 11. It was previously known that 14 less than or equal to g(2, 2; 12) less than or equal to 16. We prove that g(2, 2; 12) greater than or equal to 15.
Resumo:
Cyclic m-cycle systems of order v are constructed for all m greater than or equal to 3, and all v = 1(mod 2m). This result has been settled previously by several authors. In this paper, we provide a different solution, as a consequence of a more general result, which handles all cases using similar methods and which also allows us to prove necessary and sufficient conditions for the existence of a cyclic m-cycle system of K-v - F for all m greater than or equal to 3, and all v = 2(mod 2m).
Resumo:
A theta graph is a graph consisting of three pairwise internally disjoint paths with common end points. Methods for decomposing the complete graph K-nu into theta graphs with fewer than ten edges are given.
Resumo:
We describe a direct method of partitioning the 840 Steiner triple systems of order 9 into 120 large sets. The method produces partitions in which all of the large sets are isomorphic and we apply the method to each of the two non-isomorphic large sets of STS(9).
Resumo:
We produce families of irreducible cyclic presentations of the trivial group. These families comprehensively answer questions about such presentations asked by Dunwoody and by Edjvet, Hammond, and Thomas. Our theorems are purely theoretical, but their derivation is based on practical computations. We explain how we chose the computations and how we deduced the theorems.
Resumo:
Let K(r, s, t) denote the complete tripartite graph with partite sets of size r, s and t, where r less than or equal to s less than or equal to t. Let D be the graph consisting of a triangle with an edge attached. We show that K(r, s, t) may be decomposed into copies of D if and only if 4 divides rs + st + rt and t less than or equal to 3rs/(r + s).
Resumo:
In this note we first introduce balanced critical sets and near balanced critical sets in Latin squares. Then we prove that there exist balanced critical sets in the back circulant Latin squares of order 3n for n even. Using this result we decompose the back circulant Latin squares of order 3n, n even, into three isotopic and disjoint balanced critical sets each of size 3n. We also find near balanced critical sets in the back circulant Latin squares of order 3n for n odd. Finally, we examine representatives of each main class of Latin squares of order up to six in order to determine which main classes contain balanced or near balanced critical sets.
Resumo:
A critical set in a Latin square of order n is a set of entries from the square which can be embedded in precisely one Latin square of order n, Such that if any element of the critical set. is deleted, the remaining set can be embedded, in more than one Latin square of order n.. In this paper we find all the critical sets of different sizes in the Latin squares of order at most six. We count the number of main and isotopy classes of these critical sets and classify critical sets from the main classes into various strengths. Some observations are made about the relationship between the numbers of classes, particularly in the 6 x 6 case. Finally some examples are given of each type of critical set.