86 resultados para Density functional approximations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H-2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the results of an experimental and theoretical study of the electronic and structural properties of a key eumelanin precursor-5,6,-dihydroxyindole-2-carboxylic acid ( DHICA) - and its dimeric forms. We have used optical spectroscopy to follow the oxidative polymerization of DHICA to eumelanin and observe red shifting and broadening of the absorption spectrum as the reaction proceeds. First principles density functional theory calculations indicate that DHICA oligomers ( possible reaction products of oxidative polymerization) have the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital red-shifted gaps with respect to the monomer. Furthermore, different bonding configurations ( leading to oligomers with different structures) produce a range of gaps. These experimental and theoretical results lend support to the chemical disorder model where the broadband monotonic absorption characteristic of all melanins is a consequence of the superposition of a large number of nonhomogeneously broadened Gaussian transitions associated with each of the components of a melanin ensemble. These results suggest that the traditional model of eumelanin as an amorphous organic semiconductor is not required to explain its optical properties and should be thoroughly reexamined. These results have significant implications for our understanding of the physics, chemistry, and biological function of these important biological macromolecules. Indeed, one may speculate that the robust functionality of melanins in vitro is a direct consequence of its heterogeneity, i.e., chemical disorder is a "low cost" natural resource in these systems

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solvation. pressure due to adsorption of fluids in porous materials is the cause of elastic deformation of an adsorbent, which is accessible to direct experimental measurements. Such a deformation contributes to the Helmholtz free energy of the whole adsorbent-adsorbate system due to accumulation of compression or tension energy by the solid. It means that in the general case the solid has to be considered as not solely a source of the external potential field for the fluid confined in the pore volume, but also as thermodynamically nonmert component of the solid-fluid system. We present analysis of nitrogen adsorption isotherms and heat of adsorption in slit graphitic pores accounting for the adsorption deformation by means of nonlocal density functional theory. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the isomeric distribution and rearrangement of complexes of the type [CoXLn](2+,3+) (where X = Cl-, OH-, H2O, and L-n represents a pentadentate 13-, 14-, and 15-membered tetraaza or diaza-dithia (N-4 or N2S2) macrocycle bearing a pendant primary amine). The preparative procedures for chloro complexes produced almost exclusively kinetically preferred cis isomers (where the pendant primary amine is cis to the chloro ligand) that can be separated by careful cation-exchange chromatography. For L-13 and L-14 the so-called cis-V isomer is isolated as the kinetic product, and for L-15 the cis-VI form (an N-based diastereomer) is the preferred, while for the L-14(S) complex both cis-V and trans-I forms are obtained. All these complexes rearrange to form stable trans isomers in which the pendent primary amine is trans to the monodentate aqua or hydroxo ligand, depending on pH and the workup procedure. In total 11 different complexes have been studied. From these, two different trans isomers of [CoCIL14S](2+) have been characterized crystallographically for the first time in addition to a new structure of cis-V-[CoCIL14S](2+); all were isolated as their chloride perchlorate salts. Two additional isomers have been identified and characterized by NMR as reaction intermediates. The remaining seven forms correspond to the complexes already known, produced in preparative procedures. The kinetic, thermal, and baric activation parameters for all the isomerization reactions have been determined and involve large activation enthalpies and positive volumes of activation. Activation entropies indicate a very important degree of hydrogen bonding in the reactivity of the complexes, confirmed by density functional theory studies on the stability of the different isomeric forms. The isomerization processes are not simple and even some unstable intermediates have been detected and characterized as part of the above-mentioned 11 forms of the complexes. A common reaction mechanism for the isomerization reactions has been proposed for all the complexes derived from the observed kinetic and solution behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The storage of gases in porous adsorbents, such as activated carbon and carbon nanotubes, is examined here thermodynamically from a systems viewpoint, considering the entire adsorption-desorption cycle. The results provide concrete objective criteria to guide the search for the Holy Grail adsorbent, for which the adsorptive delivery is maximized. It is shown that, for ambient temperature storage of hydrogen and delivery between 30 and 1.5 bar pressure, for the optimum adsorbent the adsorption enthalpy change is 15.1 kJ/mol. For carbons, for which the average enthalpy change is typically 5.8 kJ/mol, an optimum operating temperature of about 115 K is predicted. For methane, an optimum enthalpy change of 18.8 kJ/mol is found, with the optimum temperature for carbons being 254 K. It is also demonstrated that for maximum delivery of the gas the optimum adsorbent must be homogeneous, and that introduction of heterogeneity, such as by ball milling, irradiation, and other means, can only provide small increases in physisorption-related delivery for hydrogen. For methane, heterogeneity is always detrimental, at any value of average adsorption enthalpy change. These results are confirmed with the help of experimental data from the literature, as well as extensive Monte Carlo simulations conducted here using slit pore models of activated carbons as well as atomistic models of carbon nanotubes. The simulations also demonstrate that carbon nanotubes offer little or no advantage over activated carbons in terms of enhanced delivery, when used as storage media for either hydrogen or methane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Knowledge of the adsorption behavior of coal-bed gases, mainly under supercritical high-pressure conditions, is important for optimum design of production processes to recover coal-bed methane and to sequester CO2 in coal-beds. Here, we compare the two most rigorous adsorption methods based on the statistical mechanics approach, which are Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) simulation, for single and binary mixtures of methane and carbon dioxide in slit-shaped pores ranging from around 0.75 to 7.5 nm in width, for pressure up to 300 bar, and temperature range of 308-348 K, as a preliminary study for the CO2 sequestration problem. For single component adsorption, the isotherms generated by DFT, especially for CO2, do not match well with GCMC calculation, and simulation is subsequently pursued here to investigate the binary mixture adsorption. For binary adsorption, upon increase of pressure, the selectivity of carbon dioxide relative to methane in a binary mixture initially increases to a maximum value, and subsequently drops before attaining a constant value at pressures higher than 300 bar. While the selectivity increases with temperature in the initial pressure-sensitive region, the constant high-pressure value is also temperature independent. Optimum selectivity at any temperature is attained at a pressure of 90-100 bar at low bulk mole fraction of CO2, decreasing to approximately 35 bar at high bulk mole fractions. (c) 2005 American Institute of Chemical Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present results of the reconstruction of a saccharose-based activated carbon (CS1000a) using hybrid reverse Monte Carlo (HRMC) simulation, recently proposed by Opletal et al. [1]. Interaction between carbon atoms in the simulation is modeled by an environment dependent interaction potential (EDIP) [2,3]. The reconstructed structure shows predominance of sp(2) over sp bonding, while a significant proportion of sp(3) hybrid bonding is also observed. We also calculated a ring distribution and geometrical pore size distribution of the model developed. The latter is compared with that obtained from argon adsorption at 87 K using our recently proposed characterization procedure [4], the finite wall thickness (FWT) model. Further, we determine self-diffusivities of argon and nitrogen in the constructed carbon as functions of loading. It is found that while there is a maximum in the diffusivity with respect to loading, as previously observed by Pikunic et al. [5], diffusivities in the present work are 10 times larger than those obtained in the prior work, consistent with the larger pore size as well as higher porosity of the activated saccharose carbon studied here.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adsorption isotherms of methane and carbon dioxide on two kinds of Australian coals have been measured at three temperatures up to pressures of 20 MPa. The adsorption behavior is described by three isotherm equations: extended three-parameter, Langmuir, and Toth. Among these, the Toth equation is found to be the most suitable, yielding the most realistic values of pore volume of the coals and the adsorbed phase density. Also, the surface area of coals obtained from CO2 adsorption at 273 K is found to be the meaningful parameter which captures the CO2 adsorption capacity. A maximum in the excess amount adsorbed of each gas appears at a lower pressure with a decrease in temperature. For carbon dioxide, after the appearance of the maximum, an inflection point in the excess amount adsorbed is observed close to the critical density at each temperature, indicating that the decrease in the gas-phase density change with pressure influences the behavior of the excess amount adsorbed. In the context of CO2 sequestration, it is found that CO2 injection pressures of lower than 10 MPa may be desirable for the CH4 recovery process and CO2-holding capacity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Boron substitution in carbon materials has been comprehensively investigated using the density functional theory method. It was found that there is a correlation between the stability of the graphene sheet, the distribution of T electrons, the electrostatic potential, and the capability for hydrogen-atom adsorption. Boron substitution destabilizes the graphene structure, increases the density of the electron wave around the substitutional boron atoms, and lowers the electrostatic potential, thus improving the hydrogen adsorption energy on carbon. However, this improvement is only ca. 10-20% instead of a factor of 4 or 5. Our calculations also show that two substitutional boron atoms provide consistent and reliable results, but one substitutional boron results in contradictory conclusions. This is a warning to other computational chemists who work on boron substitution that the conclusion from one substitutional boron might not be reliable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H-2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H-2 molecules, respectively). Additionally, a molecular adsorption state of H-2 above the Ti atom is observed for the first time and is attributed to the polarization of the H-2 molecule by the Ti cation. Our results parallel recent findings for H-2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.