131 resultados para Crack Numerical Density
Resumo:
Field studies have shown that the elevation of the beach groundwater table varies with the tide and such variations affect significantly beach erosion or accretion. In this paper, we present a BEM (Boundary Element Method) model for simulating the tidal fluctuation of the beach groundwater table. The model solves the two-dimensional flow equation subject to free and moving boundary conditions, including the seepage dynamics at the beach face. The simulated seepage faces were found to agree with the predictions of a simple model (Turner, 1993). The advantage of the present model is, however, that it can be used with little modification to simulate more complicated cases, e.g., surface recharge from rainfall and drainage in the aquifer may be included (the latter is related to beach dewatering technique). The model also simulated well the field data of Nielsen (1990). In particular, the model replicated three distinct features of local water table fluctuations: steep rising phase versus flat falling phase, amplitude attenuation and phase lagging.
Resumo:
High-pressure homogenization is a key unit operation used to disrupt cells containing intracellular bioproducts. Modeling and optimization of this unit are restrained by a lack of information on the flow conditions within a homogenizer value. A numerical investigation of the impinging radial jet within a homogenizer value is presented. Results for a laminar and turbulent (k-epsilon turbulent model) jet are obtained using the PHOENICS finite-volume code. Experimental measurement of the stagnation region width and correlation of the cell disruption efficiency with jet stagnation pressure both indicate that the impinging jet in the homogenizer system examined is likely to be laminar under normal operating conditions. Correlation of disruption data with laminar stagnation pressure provides a better description of experimental variability than existing correlations using total pressure drop or the grouping 1/Y(2)h(2).
Resumo:
A method is presented for computing the fields produced by radio frequency probes of the type used in magnetic resonance imaging. The effects of surrounding the probe with a shielding coil, intended to eliminate stray fields produced outside the probe, are included. An essential feature of these devices is the fact that the conducting rungs of the probe are of finite width relative to the coil radius, and it is therefore necessary to find the distribution of current within the conductors as part of the solution process. This is done here using a numerical method based on the inverse finite Hilbert transform, applied iteratively to the entire structure including its shielding coils. It is observed that the fields are influenced substantially by the width of the conducting rungs of the probe, since induced eddy currents within the rungs become more pronounced as their width is increased. The shield is also shown to have a significant effect on both the primary current density and the resultant fields. Quality factors are computed for these probes and compared with values measured experimentally.
Resumo:
As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Maximization of bone accrual during the growing years is thought to be an important factor in minimizing fracture risk in old age. Mechanical loading through physical activity has been recommended as a modality for the conservation of bone mineral in adults; however, few studies have evaluated the impact of different loading regimes in growing children. The purpose of this study was to compare bone mineral density (BMD) in weight-bearing and non-weight-bearing limbs in 17 children with unilateral Legg Calve Perthes Disease (LCPD). Children with this condition have an altered weight-bearing pattern whereby there is increased mechanical loading on the noninvolved normal hip and reduced loading on the involved painful hip. Thus, these children provide a unique opportunity to study the impact of differential mechanical loading on BMD during the growing years while controlling for genetic disposition. BMD at four regions of the proximal femur (trochanter, intertrochanter, femoral neck, total of the regions) was measured using dual energy x-ray absorptiometry (DXA), and the values were compared between the involved and noninvolved sides of the children with LCPD. The BMD of both sides also were compared with normative values based on both chronological and skeletal age data. A significantly higher BMD was found on the noninvolved side over the involved side for all regions (P
Resumo:
Risk factors for melanoma include environmental (particularly ultraviolet exposure) and genetic factors. In rare families, susceptibility to melanoma is determined by high penetrance mutations in the genes CDKN2A or CDK4, with more common, less penetrant genes also postulated. A further, potent risk factor for melanoma is the presence of large numbers of melanocytic nevi so that genes controlling nevus phenotype could be such melanoma susceptibility genes. A large Australian study involving twins aged 12 y of predominantly U.K. ancestry showed strong evidence for genetic influence on nevus number and density. We carried out essentially the same study in the U.K. to gain insight into gene-environment interactions for nevi. One hundred and three monozygous (MZ) and 118 dizygous (DZ) twin pairs aged 10-18 y were examined in Yorkshire and Surrey, U.K. Nevus counts were, on average, higher in boys (mean = 98.6) than girls (83.8) (p = 0.009) and higher in Australia (110.4) than in the U.K. (79.2, adjusted to age 12 y, p < 0.0001), and nevus densities were higher on sun-exposed sites (92 per m(2)) than sun-protected sites (58 per m(2)) (p < 0.0001). Correlations in sex and age adjusted nevus density were higher in MZ pairs (0.94, 95% CI 0.92-0.96) than in DZ pairs (0.61, 95%CI 0.49-0.72), were notably similar to those of the Australian study (MZ = 0.94, DZ = 0.60), and were consistent with high heritability (65% in the U.K., 68% in Australia). We conclude that emergence of nevi in adolescents is under strong genetic control, whereas environmental exposures affect the mean number of nevi.
Resumo:
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.