99 resultados para Colistin sulfate
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
Cell-surface proteoglycans are involved in lymphocyte migration and activation. This study investigated the expression of syndecan-1, syndecan-4, and glypican in peripheral blood lymphocytes and by lymphocytes in variously inflamed periodontal tissues. Gingival specimens from healthy, gingivitis, or chronic periodontitis sites were stained by means of antibodies against B- and T-lymphocytes and also syndecan-1, syndecan-4, and glypican. Syndecan-1 expression by peripheral blood mononuclear cells (PBMC) from healthy, gingivitis, and chronic periodontitis subjects was assessed by flow cytometry. Syndecan-1 was expressed by B-cells/plasma cells but not T-cells in both gingivitis and chronic periodontitis lesions, Both B-cells/plasma cells and T-cells in gingivitis and chronic periodontitis expressed syndecan-4. Glypican was expressed only by macrophages. Stimulation of PBMC with mitogens and growth factors modulated syndecan-1 expression in both the T- and B-cells. Thus, cell-surface proteoglycan expression by lymphocytes in periodontal inflammation is cell-type-specific and may be modulated by inflammation.
Resumo:
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.
Resumo:
The extended X-ray absorption fine structure spectroscopy (EXAFS) of (ND4)(2)[CU(D2O)(6)](SO4)(2) at 5, 14,100, 200, and 298 K is reported. This indicates that the Cu-O bond lengths of the Cu(D2O)(6)(2+) ion do not change significantly within this temperature range, which contrasts with EPR results and X-ray and neutron diffraction experiments, which imply that two of the Cu-(D2O) bonds converge in length as the temperature is raised. The EXAFS measurements thus confirm that the bond distances yielded by the diffraction experiments refer to the average positions of ligands involved in a dynamic equilibrium in which the directions of the long and intermediate bonds of the Jahn-Teller distorted Cu(D2O)(6)(2+) ion are interchanged in the crystal lattice. Analysis of the displacement parameters is consistent with this interpretation, as are the wave functions calculated using a model involving Jahn-Teller vibronic coupling and the influence of lattice strain interactions.
Resumo:
OBJECTIVE: The purpose of this study was to determine the population pharmacokinetics of magnesium from sparse observational data in patients with preeclampsia. STUDY DESIGN: Serum magnesium concentrations (1-11 per patient) were obtained retrospectively from the records of 116 patients with preeclampsia who had a loading dose of magnesium sulfate (16 or 20 mmol), followed by a maintenance dose (1 mmol/h) over an average of 28 hours. Population clearance, volume of distribution, and the baseline magnesium concentration were estimated using the NONMEM program. RESULTS: The following population typical values, together with the interpatient variability (expressed as coefficient of variation) were obtained with the use of a 1-compartment model: systemic clearance, 4.28 L/h (37.3%); volume of distribution, 32.3 L (32.1%); baseline concentration, 0.811 mmol/L (18.5%). The average half-life was 5.2 hours. Clonus was not obtunded in 4 patients whose serum magnesium concentrations were similar to the average concentration of 1.7 mmol/L. The variability remaining unexplained after the population model was fitted to the data was 6.5% to 10.8%. CONCLUSION: This study extended knowledge of the pharmacokinetic disposition of magnesium in preeclampsia. The results are potentially useful for the calculation of loading and maintenance doses, particularly when the relationship between serum concentration and effect in preeclampsia is clarified.
Resumo:
The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.
Resumo:
Purpose: The phenotype of vascular smooth muscle cells (SMCs) is altered in several arterial pathologies, including the neointima formed after acute arterial injury. This study examined the time course of this phenotypic change in relation to changes in the amount and distribution of matrix glycosaminoglycans. Methods: The immunochemical staining of heparan sulphates (HS) and chondroitin sulphates (CS) in the extracellular matrix of the arterial wall was examined at early points after balloon catheter injury of the rabbit carotid artery. SMC phenotype was assessed by means of ultrastructural morphometry of the cytoplasmic volume fraction of myofilaments. The proportions of cell and matrix components in the media were analyzed with similar morphometric techniques. Results: HS and CS were shown in close association with SMCs of the uninjured arterial media as well as being more widespread within the matrix. Within 6 hours after arterial injury, there was loss of the regular pericellular distribution of both HS and CS, which was associated with a significant expansion in the extracellular space. This preceded the change in ultrastructural phenotype of the SMCs. The glycosaminoglycan loss was most exaggerated at 4 days, after which time the HS and CS reappeared around the medial SMCs. SMCs of the recovering media were able to rapidly replace their glycosaminoglycans, whereas SMCs of the developing neointima failed to produce HS as readily as they produced CS. Conclusions: These studies indicate that changes in glycosaminoglycans of the extracellular matrix precede changes in SMC phenotype after acute arterial injury. In the recovering arterial media, SMCs replace their matrix glycosaminoglycans rapidly, whereas the newly established neointima fails to produce similar amounts of heparan sulphates.
Resumo:
The Brisbane River and Moreton Bay Study, an interdisciplinary study of Moreton Bay and its major tributaries, was initiated to address water quality issues which link sewage and diffuse loading with environmental degradation. Runoff and deposition of fine-grained sediments into Moreton Bay, followed by resuspension, have been linked with increased turbidity and significant loss of seagrass habitat. Sewage-derived nutrient enrichment, particularly nitrogen (N), has been linked to algal blooms by sewage plume maps. Blooms of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay have resulted in significant impacts on human health (e.g., contact dermatitis) and ecological health (e.g., seagrass loss), and the availability of dissolved iron from acid sulfate soil runoff has been hypothesised. The impacts of catchment activities resulting in runoff of sediments, nutrients and dissolved iron on the health of the Moreton Bay waterways are addressed. The Study, established by 6 local councils in association with two state departments in 1994, forms a regional component of a national and state program to achieve ecologically sustainable use of the waterways by protecting and enhancing their health, while maintaining economic and social development. The Study framework illustrates a unique integrated approach to water quality management whereby scientific research, community participation and the strategy development were done in parallel with each other. This collaborative effort resulted in a water quality management strategy which focuses on the integration of socioeconomic and ecological values of the waterways. This work has led to significant cost savings in infrastructure by providing a clear focus on initiatives towards achieving healthy waterways. The Study's Stage 2 initiatives form the basis for this paper.
Resumo:
Although the malaria parasite was discovered more than 120 years ago, it is only during the past 20 years, following the cloning of malaria genes, that we have been able to think rationally about vaccine design and development. Effective vaccines for malaria could interrupt the life cycle of the parasite at different stages in the human host or in the mosquito. The purpose of this review is to outline the challenges we face in developing a vaccine that will limit growth of the parasite during the stage within red blood cells - the stage responsible for all the symptoms and pathology of malaria. More than 15 vaccine trials have either been completed or are in progress, and many more are planned. Success in current trials could lead to a vaccine capable of saving more than 2 million lives per year.
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with a variety of growth factors and cytokines. Regulation of syndecan-1 and -2 gene expression was investigated in human periodontal ligament fibroblasts (PDLF), osteoblasts (OB) and gingival fibroblasts (GF), in response to platelet-derived growth factor (PDGF-BB), transforming growth factor (TGF-beta(1)), and interleukin (IL-1beta) by Northern blot analyses. We also compared the effect of PDGF-BB and TGF-beta(1), separately and in combination, in the prolonged presence of IL-1beta on the expression of both syndecan genes. The results demonstrated that the three cell lines regulated the expression of syndecan-1 and -2 in response to growth factors and cytokines in different manners. These cell lines increased syndecan-1 mRNA levels in response to either PDGF-BB or TGF-beta(1) and decreased levels in response to IL-1beta. The effect of IL-1beta on syndecan-1 mRNA synthesis was partially reversed after adding PDGF-BB and TGF-beta(1), separately or in combination, in the presence of IL-1beta. In contrast, syndecan-2 mRNA level was markedly upregulated in response to either TGF-beta(1) or IL-1beta in OB when compared with the other two cell lines. However, the stimulatory effect of TGF-beta(1) on syndecan-2 mRNA production in OB was abolished in the prolonged presence of IL-1beta. These findings lend support to the notion that syndecan-1 and syndecan-2 have distinct functions which correlate with their source and functions within the periodontium.
Differential expression and distribution of syndecan-1 and-2 in periodontal wound healing of the rat
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell-cell and cell-matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell-cell and cell-matrix interactions, while syndecan-2 showed a predilection to associate with cell-matrix interactions during hard tissue formation.
Resumo:
This review considers the current literature on the macro-mineral nutrition of the soon-to-calve, or transition, dairy cow. Calcium is the main focus, since milk fever (clinical hypocalcaemia) appears to be the most common mineral-related problem faced by the transition cow Australia-wide. The importance of minimising calcium intake and optimising the balance of the key dietary electrolytes, sodium, potassium, sulfate, and chloride, in the weeks before calving is highlighted. Excess dietary potassium can, in some situations, induce milk fever, perhaps even more effectively than excess calcium. Excess sodium remains under suspicion. In contrast, excess dietary chlorine and, to a lesser extent, sulfur can improve the ability of the cow to maintain calcium homeostasis. Diets that promote either a hypomagnesaemia or hyperphosphataemia have also the potential to precipitate milk fever at calving. Current prevention strategies focus on the use of forages with moderate to low levels of calcium, potassium, and sodium, and also rely on or utilise addition of chloride and sulfate in the form of 'anionic' feeds. Anionic salts are one example of an anionic feed. However, legitimate questions remain as to the effectiveness of anionic salts in pasture-feeding systems. The causes and prevention of milk fever are considered from the perspective of the variety of Australian feedbases. Impediments to the use of anionic feeds in Australia feeding systems are outlined. The potential for improving maternal reserves of calcium around calving to reduce the risk of milk fever is also discussed.
Resumo:
A new cloud-point extraction and preconcentration method, using a cationic, surfactant, Aliquat-336 (tricaprylyl-methy;ammonium chloride), his-been developed for the determination of cyanobacterial toxins, microcystins, in natural waters. Sodium sulfate was used to induce phase separation at 25 degreesC. The phase behavior of Aliquat-336 with respect to concentration of Na2SO4 was studied. The cloud-point system revealed a very high phase volume ratio compared to other established systems of nonionic, anionic, and cationic surfactants: At pH 6-7, it showed an outstanding selectivity in ahalyte extraction for anionic species. Only MC-LR and MC-YR, which are known to be predominantly anionic, were extracted (with averaged recoveries of 113.9 +/- 9% and 87.1 +/- 7%, respectively). MC-RR, which is likely to be amphoteric at the above pH range, was. not cle tectable in.the extract. Coupled to HPLC/UV separation and detection, the cloud-point extraction method (with 2.5 mM Aliquat-336 and 75 mM Na2SO4 at 25 degreesC) offered detection limits of 150 +/- 7 and 470 +/- 72 pg/mL for MC-LR and MC-YR, respectively, in 25 mL of deionized water. Repeatability of the method was 7.6% for MC-LR and 7.3% for MC-YR: The cloud-point extraction process can be. completed within 10-15 min with no cleanup steps required. Applicability of the new method to the determination of microcystins in real samples was demonstrated using natural surface waters, collected from a local river and a local duck pond spiked with realistic. concentrations of microcystins. Effects of salinity and organic matter (TOC) content in the water sample on the extraction efficiency were also studied.
Resumo:
A dictum long-held has stated that the adult mammalian brain and spinal cord are not capable of regeneration after injury. Recent discoveries have, however, challenged this dogma. In particular, a more complete understanding of developmental neurobiology has provided an insight into possible ways in which neuronal regeneration in the central nervous system may be encouraged. Knowledge of the role of neurotrophic factors has provided one set of strategies which may be useful in enhancing CNS regeneration. These factors can now even be delivered to injury sites by transplantation of genetically modified cells. Another strategy showing great promise is the discovery and isolation of neural stem cells from adult CNS tissue. It may become possible to grow such cells in the laboratory and use these to replace injured or dead neurons. The biological and cellular basis of neural injury is of special importance to neurosurgery, particularly as therapeutic options to treat a variety of CNS diseases becomes greater. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Heparan sulphate is an important mediator in determining vascular smooth muscle cell (SMC) phenotype. The sulphation pattern of the heparan sulphate chains is critical to their function. We have examined the initial step in the biosynthesis of the sulphated domains mediated by the enzyme heparan sulphate N-deacetylase/N-sulphotransferase (NDST). Rabbit aortic SMC in primary culture exhibited NDST enzyme activity and expressed NDST-1 in their Golgi apparatus, with maximal expression in SMC 2 days after dispersal in primary culture confirmed by Western blot analysis. Endothelial cells, macrophages and fibroblasts expressed NDST-1 but had generally less intense staining than SMC, although SMC expression decreased with culture. The uninjured rat aorta also showed widespread expression of NDST-1. After balloon de-endothelialisation, NDST-1 could not be detected in SMC of the neointima in the early stages of neointimal formation, but was re-expressed at later time points (after 12 weeks). In human coronary arteries, SMC of the media and the diffuse intimal thickening expressed NDST-1, while SMC in the atherosclerotic plaque were negative for NDST-1. We conclude that SMC may regulate their heparan sulphate sulphation at the level of expression of the enzyme heparan sulphate NDST in a manner related to their phenotypic state.