145 resultados para Channel patterns
Influences on knowledge of wildlife species on patterns of willingness to pay for their conservation
Resumo:
Examines the influence of respondents’ knowledge of wildlife species on their willingness to pay for conservation of the individual species. It does so by using data generated by surveys of 204 individuals who participated in a structured experiment in which their knowledge of a selected set of wildlife species was increased. The species selected were Australian ones, mostly but not entirely, tropical ones. The species were divided into three taxa for the experiment; reptiles, mammals and birds. Each set of species in the taxa included some species expected to be poorly known initially and some anticipated to be well known. Respondents rated their knowledge of each species on a Likert scale, and changes in their average allocation of funds for the conservation of each species were examined as their knowledge increased. Some general relationships are observed.
Resumo:
It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.
Diversity and commonality in national identities: an exploratory analysis of cross-national patterns
Resumo:
Issues of boundary maintenance are implicit in all studies of national identity. By definition, national communities consist of those who are included but surrounded (literally or metaphorically) by those who are excluded. Most extant research on national identity explores criteria for national membership largely in terms of official or public definitions described, for example, in citizenship and immigration laws or in texts of popular culture. We know much less about how ordinary people in various nations reason about these issues. An analysis of cross-national (N = 23) survey data from the 1995 International Social Science Program reveals a core pattern in most of the countries studied. Respondents were asked how important various criteria were in being 'truly' a member of a particular nation. Exploratory factor analysis shows that these items cluster in terms of two underlying dimensions. Ascriptive/objectivist criteria relating to birth, religion and residence can be distinguished from civic/voluntarist criteria relating to subjective feelings of membership and belief in core institutions. In most nations the ascriptive/objectivist dimension of national identity was more prominent than the subjective civic/voluntarist dimension. Taken overall, these findings suggest an unanticipated homogeneity in the ways that citizens around the world think about national identity. To the extent that these dimensions also mirror the well-known distinction between ethnic and civic national identification, they suggest that the former remains robust despite globalization, mass migration and cultural pluralism. Throughout the world official definitions of national identification have tended to shift towards a civic model. Yet citizens remain remarkably traditional in outlook. A task for future research is to investigate the macrosociological forces that produce both commonality and difference in the core patterns we have identified.
Resumo:
It has been hypothesized that the brain categorizes stressors and utilizes neural response pathways that vary in accordance with the assigned category. If this is true, stressors should elicit patterns of neuronal activation within the brain that are category-specific. Data from previous Immediate-early gene expression mapping studies have hinted that this is the case, but interstudy differences in methodology render conclusions tenuous. In the present study, immunolabelling for the expression of c-fos was used as a marker of neuronal activity elicited in the rat brain by haemorrhage, immune challenge, noise, restraint and forced swim. All stressors elicited c-fos expression in 25-30% of hypothalamic paraventricular nucleus corticotrophin-releasing-factor cells, suggesting that these stimuli were of comparable strength, at least with regard to their ability to activate the hypothalamic-pituitary-ad renal axis. In the amygdala, haemorrhage and immune challenge both elicited c-fos expression in a large number of neurons in the central nucleus of the amygdala, whereas noise, restraint and forced swim primarily elicited recruitment of cells within the medial nucleus of the amygdala. In the medulla, all stressors recruited similar numbers of noradrenergic (A1 and A2) and adrenergic (C1 and C2) cells. However, haemorrhage and immune challenge elicited c-fos expression In subpopulations of A1 and A2 noradrenergic cells that were significantly more rostral than those recruited by noise, restraint or forced swim. The present data support the suggestion that the brain recognizes at least two major categories of stressor, which we have referred to as 'physical' and 'psychological'. Moreover, the present data suggest that the neural activation footprint that is left in the brain by stressors can be used to determine the category to which they have been assigned by the brain.
Resumo:
K(V)LQT1 (K(V)LQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of K(V)LQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to K(V)LQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of K(V)LQT1 in crypt cells and surface epithelium. Expression of rK(V)LQT1 in Xenopus oocytes induced a typical delayed activated K+ current. that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that K(V)QT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis.
Resumo:
Outcome after traumatic brain injury (TBI) is characterized by a high degree of variability which has often been difficult to capture in traditional outcome studies. The purpose of this study was to describe patterns of community integration 2-5 years after TBI. Participants were 208 patients admitted to a Brain Injury Rehabilitation Unit between 1991-1995 in Brisbane, Australia. The design comprised retrospective data collection and questionnaire follow-up by mail. Mean follow-up was 3.5 years. Demographic, injury severity and functional status variables were retrieved from hospital records. Community integration was assessed using the Community Integration Questionnaire (CIQ), and vocational status measured by a self administered questionnaire. Data was analysed using cluster analysis which divided the data into meaningful subsets. Based on the CIQ subscale scores of home, social and productive integration, a three cluster solution was selected, with groups labelled as working (n = 78), balanced (n = 46) and poorly integrated (n = 84). Although 38% of the sample returned to a high level of productive activity and 22% achieved a balanced lifestyle, overall community integration was poor for the remainder. This poorly integrated group had more severe injury characterized by longer periods of acute care and post-traumatic amnesia (PTA) and greater functional disability on discharge. These findings have implications for service delivery prior to and during the process of reintegration after brain injury.
Resumo:
The extrastriate cortex near the dorsal midline has been described as part of an 'express' pathway that provides visual input to the premotor cortex. This pathway is considered important for the integration of sensory information about the visual field periphery and the skeletomotor system, especially in relation to the control of arm movements. However, a better understanding of the functional contributions of different parts of this complex has been hampered by the lack of data on the extent and boundaries of its constituent visual areas. Recent studies in macaques have provided the first detailed view of the topographical organization of this region in Old World monkeys. Despite differences in nomenclature, a comparison of the visuotopic organization, myeloarchitecture and connections of the relevant visual areas with those previously studied in New World monkeys reveals a remarkable degree of similarity and helps to clarify the subdivision of function between different areas of the dorsomedial complex. A caudal visual area, named DM or V6, appears to be important for the detection of coherent patterns of movement across wide regions of the visual field, such as those induced during self-motion. A rostral area, named M or V6A, is more directly involved with visuomotor integration. This area receives projections both from DM/V6 and from a separate motion analysis channel, centred on the middle temporal visual area (or V5), which detects the movement of objects in extrapersonal space. These results support the suggestion, made earlier on the basis of more fragmentary evidence, that the areas rostral to the second visual area in dorsal cortex are homologous in all simian primates. Moreover, they emphasize the importance of determining the anatomical organization of the cortex as a prerequisite for elucidating the function of different cortical areas.
Resumo:
During investigation of an outbreak of Japanese encephalitis (JE) in the Torres Strait, Australia, in 2000, mosquitoes were collected in Badu Island community and at a newly established communal piggery about 3 km from the community. A total of 94285 mosquitoes, comprising 91240 (96.8%) unengorged females, 1630 (1.7%) blood-engorged females and 1415 (1.5%) males, were processed for virus isolation. One isolate of JE virus was obtained from Culex gelidus, with a minimum infection rate of 12.4:1000. This is the first isolate of JE virus from Cx. gelidus in the Australasian region. No isolates were obtained from Cx. annulirostris, the primary implicated Australian JE vector. Analysis of mosquito host-feeding patterns, using gel diffusion, demonstrated that Cx. annulirostris and 5 other species fed predominately on mammals, Analysis of blood-fed mosquitoes collected within the community demonstrated that the proportion of Cx. annulirostris feeding on pigs in 2000 (2.3%) was significantly lower than that for the 1995-97 period (31.3%). The removal of the pigs from Badu Island community has limited the contact between potential amplifying hosts and mosquitoes, thus potentially reducing the risk of transmission of JE virus to the human population.