99 resultados para Cell-surface


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Eph and ephrin system, consisting of fourteen Eph receptor tyrosine kinase proteins and nine ephrin membrane proteins in vertebrates, has been implicated in the regulation of many critical events during development. Binding of cell surface Eph and ephrin proteins results in bi-directional signals, which regulate the cytoskeletal, adhesive and motile properties of the interacting cells. Through these signals Eph and ephrin proteins are involved in early embryonic cell movements, which establish the germ layers, cell movements involved in formation of tissue boundaries and the pathfinding of axons. This review focuses on two vertebrate models, the zebrafish and mouse, in which experimental perturbation of Eph and/or ephrin expression in vivo have provided important insights into the role and functioning of the Eph/ephrin system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neurexins are a large family of neuronal cell-surface proteins believed to be involved in intercellular signalling and the formation of intercellular junctions. To begin to assess the role of these proteins in the olfactory bulb, we describe here the expression patterns of their transmembrane and secreted ligands, the neuroligins and neurexophilins, during both embryonic and postnatal development. In situ hybridisation showed that neuroligin 1 and 2 were expressed by second order mitral cells during early postnatal development but not in adults. The secreted ligand for a-neurexin, neurexophilin 1, was also expressed in the postnatal olfactory bulb. Neurexophilin 1 was detected in only periglomerular cells during the early postnatal period of glomerular formation but later was also expressed in mitral cells. These results suggest that neurexin-ligand interactions may be important for development and/or maturation of synaptic connections in the primary olfactory pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Binding of cell surface carbohydrates to their receptors specifically promotes axon growth and synaptogenesis in select regions of the developing nervous system. In some cases these interactions depend upon cell-cell adhesion mediated by the same glycoconjugates present on the surface of apposing cells or their processes. We have previously shown that the plant lectin Dolichos biflorus agglutinin (DBA) binds to: a subpopulation of mouse primary olfactory neurons whose axons selectively fasciculate prior to terminating in the olfactory bulb. In the present study, we investigated whether these glycoconjugates were also expressed by postsynaptic olfactory neurons specifically within the olfactory pathway. We show here for the first time that DBA ligands were expressed both by a subset of primary olfactory neurons as well as by the postsynaptic mitral/tufted cells in BALB/C mice. These glycoconjugates were first detected on mitral/tufted cell axons during the early postnatal period, at a time when there is considerable synaptogenesis and synaptic remodelling in the primary olfactory cortex. This is one of the few examples of the selective expression of molecules in contiguous axon tracts in the mammalian nervous system. These results suggest that glycoconjugates recognized by DBA may have a specific role in the formation and maintenance of neural connections within a select functional pathway in the brain. J. Comp. Neurol. 443:213-225, 2002. (C) 2002 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we studied the fate of endocytosed glycosylphosphatidyl inositol anchored proteins (GPI-APs) in mammalian cells, using aerolysin, a bacterial toxin that binds to the GPI anchor, as a probe. We find that GPI-APs are transported down the endocytic pathway to reducing late endosomes in BHK cells, using biochemical, morphological and functional approaches. We also find that this transport correlates with the association to raft-like membranes and thus that lipid rafts are present in late endosomes (in addition to the Golgi and the plasma membrane). In marked contrast, endocytosed GPI-APs reach the recycling endosome in CHO cells and this transport correlates with a decreased raft association. GPI-APs are, however, diverted from the recycling endosome and routed to late endosomes in CHO cells, when their raft association is increased by clustering seven or less GPI-APs with an aerolysin mutant. We conclude that the different endocytic routes followed by GPI-APs in different cell types depend on the residence time of GPI-APs in lipid rafts, and hence that raft partitioning regulates GPI-APs sorting in the endocytic pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The MUC1 mucin (CD227) is a cell surface mucin originally thought to be restricted to epithelial tissues. We report that CD227 is expressed on human blood dendritic cells (DC) and monocyte-derived DC following in vitro activation. Freshly isolated murine splenic DC had very low levels of CD227; however, all DC expressed CD227 following in vitro culture. In the mouse spleen, CD227 was seen on clusters within the red pulp and surrounding the marginal zone in the white pulp. Additionally, we confirm CD227 expression by activated human T cells and show for the first time that the CD227 cytoplasmic domain is tyrosine-phosphorylated in activated T cells and DC and is associated with other phosphoproteins, indicating a role in signaling. The function of CD227 on DC and T cells requires further elucidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Simian virus 40 (SV40) is a nonenveloped virus that has been shown to pass from surface caveolae to the endoplasmic reticulum in an apparently novel infectious entry pathway. We now show that the initial entry step is blocked by brefeldin A and by incubation at 20degreesC. Subsequent to the entry step, the virus reaches a domain of the rough endoplasmic reticulum by an unknown pathway. This intracellular trafficking pathway is also brefeldin A sensitive. Infection is strongly inhibited by expression of GTP-restricted ADP-ribosylation factor 1 (Arf1) and Sar1 mutants and by microinjection of antibodies to betaCOP. In addition, we demonstrate a potent inhibition of SV40 infection by the dipeptide N-benzoyl-oxycarbonyl-Gly-Phe-amide, which also inhibits late events in cholera toxin action. Our results identify novel inhibitors of SV40 infection and show that SV40 requires COPI- and COPII-dependent transport steps for successful infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton [1-4]. In the context of stable adhesion [1], cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis [2]. Here actin polymerization has been proposed to drive cell surfaces together [5], although F-actin reorganization also occurs as cell contacts mature [6]. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere [7]. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Tryanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles it? the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory), transport and protein glycosylation that may be exploited in developing new antiparasite drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caveolae are small invaginations of the cell surface that are abundant in mature adipocytes. A recent study (Kanzaki, M., and Pessin, J. E. (2002) J. Biol Chem 277, 25867-25869) described novel caveolin- and actin-containing structures associated with the adipocyte cell surface that contain specific signaling proteins. We have characterized these structures, here termed caves, using light and electron microscopy and observe that they represent surface-connected wide invaginations of the basal plasma membrane that are sometimes many micrometers in diameter. Rather than simply a caveolar domain, these structures contain all elements of the plasma membrane including clathrin-coated pits, lipid raft markers, and non-raft markers. GLUT4 is recruited to caves in response to insulin stimulation. Caves can occupy a significant proportion of the plasma membrane area and are surrounded by cortical actin. Caveolae density in caves is similar to that on the bulk plasma membrane, but because these structures protrude much deeper into the plane of focus of the light microscope molecules such as caveolin and other plasma membrane proteins appear more concentrated in caves. We conclude that the adipocyte surface membrane contains numerous wide invaginations that do not represent novel caveolar structures but rather large surface caves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endocytosis of cell-surface proteins via specific pathways is critical for their function. We show that multiple glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed to the recycling endosomal compartment but not to the Golgi via a nonclathrin, noncaveolae mediated pathway. GPI anchoring is a positive signal for internalization into rab5-independent tubular-vesicular endosomes also responsible for a major fraction of fluid-phase uptake; molecules merely lacking cytoplasmic extensions are not included. Unlike the internalization of detergent-resistant membrane (DRM)-associated interleukin 2 receptor, endocytosis of DRM-associated GPI-APs is unaffected by inhibition of RhoA or dynamin 2 activity. Inhibition of Rho family GTPase cdc42, but not Rac1, reduces fluid-phase uptake and redistributes GPI-APs to the clathrin-mediated pathway. These results describe a distinct constitutive pinocytic pathway, specifically regulated by cdc42.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Streptococcus pyogenes (Group A streptococcus) interacts with host fibronectin via a number of distinct surface components. The streptococcal serum opacity factor (SOF) is a cell-surface protein of S. pyogenes which opalescence of human serum and mediates bacterial binding to fibronectin. In this study, hexahistidyl-tagged fusion proteins encompassing full-length SOF, and domains of SOF encompassing opacity factor activity and fibronectin-binding regions, were used in the characterization of the Aboriginal immune response to SOF. Anti-SOF serum IgG responses were found to be significantly higher (P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the study was to investigate the role of glutamate residue 113 in transmembrane domain 2 of the human noradrenaline transporter in determining cell surface expression and functional activity. This residue is absolutely conserved in all members of the Na+- and Cl--dependent transporter family. Mutations to alanine (hE113A), aspartate (hE113D) and glutamine (hE113Q) were achieved by site-directed mutagenesis and the mutants were expressed in transfected COS-7 or HEK-293 cells. Cell surface expression of IIE113A and hE113D, but not hE113Q, was markedly reduced compared with wild type, and functional noradrenaline uptake was detected only for the hE113Q mutant. The pharmacological properties of the hE113Q mutant showed very little change compared with wild type, except for a decrease in V-max values for noradrenaline and dopamine uptake of 2-3-fold. However, the hE113D mutant showed very marked changes in its properties, compared with wild type, with 82-260-fold decreases in the affinities of the substrates, noradrenaline, dopamine and MPP+, and increased Na+ affinity for stimulation of nisoxetine binding. The results of the study show that the size and not the charge of the 113 glutamate residue of the noradrenaline transporter seems to be the most critical factor for maintenance of transporter function and surface expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell surface glycoconjugates have been implicated in the growth and guidance of subpopulations of primary olfactory axons. While subpopulations of primary olfactory neurons have been identified by differential expression of carbohydrates in the rat there are few reports of similar subpopulations in the mouse. We have examined the spatiotemporal expression pattern of glycoconjugates recognized by the lectin from Wisteria floribunda (WFA) in the mouse olfactory system. In the developing olfactory neuroepithelium lining the nasal cavity, WFA stained a subpopulation of primary olfactory neurons and the fascicles of axons projecting to the target tissue, the olfactory bulb. Within the developing olfactory bulb, WFA stained the synaptic neuropil of the glomerular and external plexiform layers. In adults, strong expression of WFA ligands was observed in second-order olfactory neurons as well as in neurons in several higher order olfactory processing centres in the brain. Similar, although distinct, staining of neurons in the olfactory pathway was detected with Dolichos biflorus agglutinin. These results demonstrate that unique subpopulations of olfactory neurons are chemically coded by the expression of glycoconjugates. The conserved expression of these carbohydrates across species suggests they play an important role in the functional organization of this region of the nervous system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms involved in angiotensin II type 1 receptor (AT(1)-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT(1)-R is not concentrated in caveolae but is clustered in cholesterol-independent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT(1)-R in caveolae, AT(1)-R. caveolin complexes are readily detectable in cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT(1)-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT(1)-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT(1)-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT(1)-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT(1)-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT(1)-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT(1)-R through the exocytic pathway, but this does not result in AT(1)-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT(1)-R.