152 resultados para AGRICULTURAL HISTORY
Resumo:
This paper focuses on the higher order factors affecting successful adoption of technologies. Drawing on the "actor-oriented perspective" in rural sociology, it is argued that successful examples of adoption at this higher level result from a complex conjunction of people and events, with outcomes that may have been quite unanticipated at the outset. From this perspective, research and extension projects and programs are viewed as arenas in which social actors–village leaders, farmers, researchers (local and international), aid officials, municipal agents, extension workers, and traders–pursue their own short- and long-term objectives and strategies. To this end, they maneuver, negotiate, organize, cooperate, participate, coerce, obstruct, form coalitions, adopt, adapt, and reject, all within a specific geographical and historical context.
Resumo:
This paper uses data collected from migrants' wives in the Nyeri district of Kenya. The main objective is to determine whether migration and remittances contribute to the development of agriculture. Our results suggest that most migrants are pushed out of rural areas, belong to the group of low-paid workers in urban areas, send little and irregular remittances to their wives back in rural areas and that these remittances are mainly used for consumption purposes and do not contribute to any significant development in agriculture. Our results also indicate that altruism or social obligation might be the main reason for migrants sending remittances back to their rural wives.
Resumo:
Numerical optimisation methods are being more commonly applied to agricultural systems models, to identify the most profitable management strategies. The available optimisation algorithms are reviewed and compared, with literature and our studies identifying evolutionary algorithms (including genetic algorithms) as superior in this regard to simulated annealing, tabu search, hill-climbing, and direct-search methods. Results of a complex beef property optimisation, using a real-value genetic algorithm, are presented. The relative contributions of the range of operational options and parameters of this method are discussed, and general recommendations listed to assist practitioners applying evolutionary algorithms to the solution of agricultural systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Whether contemporary human populations are still evolving as a result of natural selection has been hotly debated. For natural selection to cause evolutionary change in a trait, variation in the trait must be correlated with fitness and be genetically heritable and there must be no genetic constraints to evolution. These conditions have rarely been tested in human populations. In this study, data from a large twin cohort were used to assess whether selection Will cause a change among women in contemporary Western population for three life-history traits: age at menarche, age at first reproduction, and age at menopause. We control for temporal variation in fecundity (the baby boom phenomenon) and differences between women in educational background and religious affiliation. University-educated women have 35% lower fitness than those with less than seven years education, and Roman Catholic women have about 20% higher fitness than those of other religions. Although these differences were significant, education and religion only accounted for 2% and 1% of variance in fitness, respectively. Using structural equation modeling, we reveal significant genetic influences for all three life-history traits, with heritability estimates of 0.50, 0.23, and 0.45, respectively. However, strong genetic covariation with reproductive fitness could only be demonstrated for age at first reproduction, with much weaker covariation for age at menopause and no significant covariation for age at menarche. Selection may, therefore, lead to the evolution of earlier age at first reproduction in this population. We also estimate substantial heritable variation in fitness itself, with approximately 39% of the variance attributable to additive genetic effects, the remainder consisting of unique environmental effects and small effects from education and religion. We discuss mechanisms that could be maintaining such a high heritability for fitness. Most likely is that selection is now acting on different traits from which it did in pre-industrial human populations.