79 resultados para 2-BENZISOTHIAZOLE DERIVATIVES
Resumo:
Background-In adult human heart, both beta(1)- and beta(2)-adrenergic receptors mediate hastening of relaxation; however, it is unknown whether this also occurs in infant heart. We compared the effects of stimulation of beta(1)- and beta(2)-adrenergic receptors on relaxation and phosphorylation of phospholamban and troponin I in ventricle obtained from infants with tetralogy of Fallot. Methods and Results-Myocardium dissected from the right ventricular outflow tract of 27 infants (age range 2-1/2 to 35 months) with tetralogy of Fallot was set up to contract 60 times per minute. Selective stimulation of beta(1)-adrenergic receptors with (-)-norepinephrine (NE) and beta(2)-adrenergic receptors with (-)-epinephrine (EPI) evoked phosphorylation of phospholamban (at serine-16 and threonine-17) and troponin I and caused concentration-dependent increases in contractile force (-log EC50 [mol/L] NE 5.5+/-0.1, n=12; -EPI 5.6+/-0.1, n=13 patients), hastening of the time to reach peak force (-log EC50 [mol/L] NE 5.8+/--0.2; EPI 5.8+/-0.2) and 50% relaxation (-log EC50 [mol/L] NE 5.7+/-0.2: EPI 5.8+/-0.1), Ventricular membranes from Fallot infants, labeled with (-)-[I-125]-cyanopindolol, revealed a greater percentage of beta(1)- (71%) than beta(2)-adrenergic receptors (29%). Binding of (-)-epinephrine to beta(2)-receptors underwent greater GTP shifts than binding of (-)-norepinephrine to beta(1)-receptors. Conclusions-Despite their low density, beta(2)-adrenergic receptors are nearly as effective as beta(1)-adrenergic receptors of infant Fallot ventricle in enhancing contraction, relaxation, and phosphorylation of phospholamban and troponin I, consistent with selective coupling to G(s)-protein.
Resumo:
Magnetic resonance cholangiography (MRC) relies on the strong T-2 signal from stationary liquids, in this case bile, to generate images. No contrast agents are required, and the failure rate and risk of serious complications is lower than with endoscopic retrograde cholangiopancreatography (ERCP). Data from MRC can be summated to produce an image much like the cholangiogram obtained by using ERCP. In addition, MRC and conventional MRI can provide information about the biliary and other anatomy above and below a biliary obstruction. This provides information for therapeutic intervention that is probably most useful for hilar and intrahepatic biliary obstruction. Magnetic resonance cholangiography appears to be similar to ERCP with respect to sensitivity and specificity in detecting lesions causing biliary obstruction, and in the diagnosis of choledocholithiasis. It is also suited to the assessment of biliary anatomy (including the assessment of surgical bile-duct injuries) and intrahepatic biliary pathology. However, ERCP can be therapeutic as well as diagnostic, and MRC should be limited to situations where intervention is unlikely, where intrahepatic or hilar pathology is suspected, to delineate the biliary anatomy prior to other interventions, or after failed or inadequate ERCP. Magnetic resonance angiography (MRA) relies on the properties of flowing liquids to generate images. It is particularly suited to assessment of the hepatic vasculature and appears as good as conventional angiography. It has been shown to be useful in delineating vascular anatomy prior to liver transplantation or insertion of a transjugular intrahepatic portasystemic shunt. Magnetic resonance angiography may also be useful in predicting subsequent variceal haemorrhage in patients with oesophageal varices. (C) 2000 Blackwell Science Asia Pty Ltd.
Resumo:
The problems of structure in diastereomers where one chiral centre is remote from another are further investigated in the 1,2,8,9,9-pentabromo-p-menthane series.
Resumo:
The fine structure of a directed triple system of index lambda is the vector (c(1), c(2),...,C-lambda), where c(i) is the number of directed triples appearing precisely i times in the system. We determine necessary and sufficient conditions for a vector to be the fine structure of a directed triple system of index 3 for upsilon = 2 (mod 3).