991 resultados para 291599 Biomedical Engineering not elsewhere classified
Resumo:
The purpose of this paper is to conduct a qualitative review of randomised controlled trials in relation to the treatment of adults with co-occurring mental health and substance use disorder (MH/SUD). In particular, integrated approaches are compared with non-integrated approaches to treatment. Ten articles were identified for inclusion in the review. The findings are equivocal with regard to the superior efficacy of integrated approaches to treatment, although the many limitations of the studies need to be considered in our understanding of this finding. Clearly, this is an extremely challenging client group to engage and maintain in intervention research, and the complexity and variability of the problems render control particularly difficult. The lack of available evidence to support the superiority of integration is discussed in relation to these challenges. Much remains to be investigated with regard to integrated management and care for people with co-occurring and MH/SUD, particularly for specific combinations of dual diagnosis and giving consideration to the level of inter-relatedness between the disorders. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a new control design method is proposed for stable processes which can be described using Hammerstein-Wiener models. The internal model control (IMC) framework is extended to accommodate multiple IMC controllers, one for each subsystem. The concept of passive systems is used to construct the IMC controllers which approximate the inverses of the subsystems to achieve dynamic control performance. The Passivity Theorem is used to ensure the closed-loop stability. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Geospatio-temporal conceptual models provide a mechanism to explicitly represent geospatial and temporal aspects of applications. Such models, which focus on both what and when/where, need to be more expressive than conventional conceptual models (e.g., the ER model), which primarily focus on what is important for a given application. In this study, we view conceptual schema comprehension of geospatio-temporal data semantics in terms of matching the external problem representation (that is, the conceptual schema) to the problem-solving task (that is, syntactic and semantic comprehension tasks), an argument based on the theory of cognitive fit. Our theory suggests that an external problem representation that matches the problem solver's internal task representation will enhance performance, for example, in comprehending such schemas. To assess performance on geospatio-temporal schema comprehension tasks, we conducted a laboratory experiment using two semantically identical conceptual schemas, one of which mapped closely to the internal task representation while the other did not. As expected, we found that the geospatio-temporal conceptual schema that corresponded to the internal representation of the task enhanced the accuracy of schema comprehension; comprehension time was equivalent for both. Cognitive fit between the internal representation of the task and conceptual schemas with geospatio-temporal annotations was, therefore, manifested in accuracy of schema comprehension and not in time for problem solution. Our findings suggest that the annotated schemas facilitate understanding of data semantics represented on the schema.
Resumo:
The article analyzes the representation of disability in Australian national cinema. Disability has been an enduring topic in Australian films and it has got occasional mentions in film and cultural criticism. An important pioneering treatment in this field is film critic Elizabeth Ferrier's examination of the trope of creative disabilities. Ferrier draws attention to disability in Australian film. She provides a stimulating and nuanced reading in light of the thematics of Australian cultural anxieties. "My One Legged Dream Lover," is one of the few productions that features a disabled lead character, Kath Duncan, played by disabled performer, Kath Duncan.
Ship arrest and the admiralty jurisdiction of Australia and South Africa: too far or not far enough?
Resumo:
The effects of acetate and propionate on the performance of a recently proposed and characterized photosynthetic biological sulfide removal system have been investigated with a view to predicting this concept's suitability for removing sulfide from wastewater undergoing or having undergone anaerobic treatment. The concept relies on substratum-irradiated biofilms dominated by green sulfur bacteria (GSB), which are supplied with radiant energy in the band 720 - 780 nm. A model reactor was fed for 7 months with a synthetic wastewater free of volatile fatty acids (VFAs), after which time intermittent dosing of the wastewater with acetate or propionate was begun. Such dosing suppressed the areal net sulfide removal rate by similar to50%, and caused the principal net product of sulfide removal to switch from sulfate to elemental-S. Similarly suppressed values of this rate were observed when the wastewater was dosed continuously with acetate, and this rate was not significantly affected by changes in the concentration of ammonia-N in the feed. The main net product of sulfide removal was again elemental-S, which was scarcely released into the liquid, however. Sulfate reduction and sulfur reduction were observed when the light supply was interrupted and were inferred to be occurring within the irradiated biofilm. A preexisting conceptual model of the biofilm was augmented with both of these reductive processes, and this augmented model was shown to account for most of the observed effects of VFA dosing. The implications of these findings for the practicality of the technology are considered. (C) 2004 Wiley Periodicals, Inc.
Resumo:
In enhanced biological phosphorus removal (EBPR) processes, glycogen-accumulating organisms (GAOs) may compete with polyphosphate-accumulating organisms (PAOs) for the often-limited carbon substrates, potentially resulting in disturbances to phosphorus removal. A detailed investigation of the effect of pH on the competition between PAOs and GAOs is reported in this study. The results show that a high external pH (similar to 8) provided PAOs with an advantage over GAOs in EBPR systems. The phosphorus removal performance improved due to a population shift favouring PAOs over GAOs, which was shown through both chemical and microbiological methods. Two lab-scale reactors fed with propionate as the carbon source were subjected to an increase in pH from 7 to 8. The phosphorus removal and PAO population (as measured by quantitative fluorescence in situ hybridisation analysis of Candidatus Accumulibacter phosphatis) increased in each system, where the PAOs appeared to out-compete a group of Alphaproteobacteria GAOs. A considerable improvement in the P removal was also observed in an acetate fed reactor, where the GAO population (primarily Candidatus Competibacter phosphatis) decreased substantially after a similar increase in the pH. The results from this study suggest that pH could be used as a control parameter to reduce the undesirable proliferation of GAOs and improve phosphorus removal in EBPR systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This article presents the proceedings of a symposium presented at the ISBRA 12th World Congress on Biomedical Alcohol Research, held in Heidelberg/Mannheim, Germany, September 29 through October 2, 2004. The organizers of the symposium were Simon Worrall and Victor Preedy, and the symposium was chaired by Onni Niemelä and Geoffrey Thiele. The presentations scheduled for this symposium were (1) Adduct chemistry and mechanisms of adduct formation, by Thomas L. Freeman; (2) Malondialdehyde- acetaldehyde adducts: the 2004 update, by Geoffrey Thiele; (3) Adduct formation in the liver, by Simon Worrall; (4) Protein adducts in alcoholic cardiomyopathy, by Onni Niemelä; and (5) Alcoholic skeletal muscle myopathy: a role for protein adducts, by Victor R. Preedy.
Resumo:
To evaluate the long term sustainability of water withdrawals in the United States, a county level analysis of the availability of renewable water resources was conducted, and the magnitudes of human withdrawals from surface water and ground water sources and the stored water requirements during the warmest months of the year were evaluated. Estimates of growth in population and electricity generation were then used to estimate the change in withdrawals assuming that the rates of water use either remain at their current levels (the business as usual scenario) or that they exhibit improvements in efficiency at the same rate as observed over 1975 to 1995 (the improved efficiency scenario). The estimates show several areas, notably the Southwest and major metropolitan areas throughout the United States, as being likely to have significant new storage requirements with the business-as-usual scenario, under the condition of average water availability. These new requirements could be substantially eliminated under the improved efficiency scenario, thus indicating the importance of water use efficiency in meeting future requirements. The national assessment identified regions of potential water sustainability concern; these regions can be the subject of more targeted data collection and analyses in the future.
Resumo:
Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.
Resumo:
This paper explores potential for the RAMpage memory hierarchy to use a microkernel with a small memory footprint, in a specialized cache-speed static RAM (tightly-coupled memory, TCM). Dreamy memory is DRAM kept in low-power mode, unless referenced. Simulations show that a small microkernel suits RAMpage well, in that it achieves significantly better speed and energy gains than a standard hierarchy from adding TCM. RAMpage, in its best 128KB L2 case, gained 11% speed using TCM, and reduced energy 14%. Equivalent conventional hierarchy gains were under 1%. While 1MB L2 was significantly faster against lower-energy cases for the smaller L2, the larger SRAM's energy does not justify the speed gain. Using a 128KB L2 cache in a conventional architecture resulted in a best-case overall run time of 2.58s, compared with the best dreamy mode run time (RAMpage without context switches on misses) of 3.34s, a speed penalty of 29%. Energy in the fastest 128KB L2 case was 2.18J vs. 1.50J, a reduction of 31%. The same RAMpage configuration without dreamy mode took 2.83s as simulated, and used 2.39J, an acceptable trade-off (penalty under 10%) for being able to switch easily to a lower-energy mode.