64 resultados para wet peroxide oxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing demand for efficient air quality management calls for the development of technologies capable of meeting the stringent requirements now being applied in areas of chemical, biological and medical activities. Currently, filtration is the most effective process available for removal of fine particles from carrier gases. Purification of gaseous pollutants is associated with adsorption, absorption and incineration. In this paper we discuss a new technique for highly efficient simultaneous purification of gaseous and particulate pollutants from carrier gases, and investigate the utilization of Nuclear Magnetic Resonance (NMR) imaging for the study of the dynamic processes associated with gas-liquid flow in porous media. Our technique involves the passage of contaminated carrier gases through a porous medium submerged into a liquid, leading to the formation of narrow and tortuous pathways through the medium. The wet walls of these pathways result in outstanding purification of gaseous, liquid and solid alien additives. NMR imaging was successfully used to map the gas pathways inside the porous medium submerged into the liquid layer. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical properties of deep profile samples ( up to 12 m) of Ferrosols from northern Queensland were investigated to provide an understanding of the accumulation of nitrate ( NO3) within these soil profiles. The influence of other cations and anions present in the soil solution or on the exchange and the charge chemistry of the profiles were examined with respect to the NO3 accumulations. The major ions in the soil solution were Na, NO3, and chloride ( Cl). Distinct regions of anion accumulation were observed; SO4 accumulated in the upper profile of all cores, whereas NO3 and Cl accumulations were restricted to the lower profile of cores with appreciable AEC (> 1 cmol(c)/kg). Gaines-Thomas selectivity coefficients were used to indicate exchange preference for cations and anions, and are as follows: Al > Ca similar to Mg > K > Na and sulfate (SO4) > Cl similar to NO3. The selectivity of SO4 increased and the extractable SO4 decreased in the lower profile of all cores. This has important implications for the adsorption of NO3 and Cl. The NO3 and Cl accumulations were shown to correspond to a region of low SO4 occupancy of the exchange sites in the lower profile. Along with the high SO4 selectivity, this suggests that SO4 may control the positioning of the NO3 accumulations. It was concluded that the NO3 accumulations were relatively stable under current management practices, although the reduction in NO3 inputs would likely see the gradual replacement of NO3 with Cl as a result of their comparable selectivity for exchange sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate leaching below the crop root-zone in variable charge soils may be adsorbed at anion exchange sites, thereby temporarily reducing the risk of contamination of water bodies. The objectives of this study were (i) to investigate whether nitrate adsorption, accumulation, and retention in the Johnstone River Catchment of Far North Queensland wet tropics is widespread; (ii) to assess the capacity of soil in the Johnstone River Catchment to retain nitrate; and (iii) to deduce the consequences of nitrate adsorption/desorption on contamination of water bodies. Soil cores ranging from 8 to 12.5 m depth were taken from 28 sites across the catchment, representing 9 Ferrosol soil types under sugarcane (Saccharum officinarum-S) cultivation for at least 50 years and from rainforest. The cores were segmented at 0.5-m depth increments and subsamples were analysed for nitrate-N, cation and anion exchange capacities, pH, exchangeable cations (Ca, Mg, K, Na), soil organic C, electrical conductivity, sulfate-S, and chloride. Nitrate-N concentration under sugarcane ranged from 0 to 72.5 mg/kg, compared with 0 to 0.31 mg/kg under rainforest, both Pin Gin soils. The average N load in 1-12 m depth across 19 highly oxidic profiles of the Pin Gin soil series was 1550 kg/ha, compared with 185 kg/ha under 8 non-Pin Gin soils and 11 kg/ha in rainforest on a Pin Gin soil. Most of the nitrate retention was observed at depth of 2-12 m, particularly at 4-10 m, indicating that the accumulation was well below the crop root-zone. The average maximum potential nitrate retention capacity was 10.8 t/ha for the Pin Gin and 4.7 t/ha for the non-Pin Gin soil. Compared with the current N load, the soils still possess a large capacity to adsorb and retain nitrate in profiles. Retention of large quantities of the leached nitrate deep in most of the profiles has reduced the risk of contamination of water bodies. However, computations show that substantial quantities of the nitrate leached below the root-zone were not adsorbed and remain unaccounted for. This unaccounted nitrate might have entered both on- and off-site water bodies and/or have been denitrified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.