62 resultados para swd: Route
Resumo:
A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.
Resumo:
The acidic properties of hexagonal mesoporous aluminosilicates synthesized via a new successful short time synthesis route using leached saponite and a low concentration of surfactant are thoroughly investigated. The resulting aluminosilicate mesoporous materials with high Si/Al ratios of around 11 have a maximal surface area of 1130 m(2)/g, a pore volume of 0.92 cm(3)/g, and a narrow pore size distribution at around 3 nm. The replacement of the sodium ions, present as counterions in the synthesized aluminosilicates, with protons imparts useful catalytic acidity. This acidity is extensively studied with FTIR spectroscopy after adsorption of ammonia and cyclohexylamine, while deuterated acetonitrile differentiates between Bronsted and Lewis acidity. Al-27 NMR spectroscopy determined the coordination of the aluminum in the FSM materials. Simultaneously the effect of an additional Al incorporation, utilizing sodium aluminate, aluminum nitrate, and aluminum isopropoxide is studied. From an acidic point of view, the incorporation with Al(NO3)(3) appears to be the most optimal, as the sample has a very high amount of acid sites (1.3 mmol/g). Investigating the nature of the acid sites it is found that in all samples except the one incorporated with Al(NO3)(3), more Bronsted than Lewis sites are present, both sites being quite acidic as they resist desorption temperatures up to 300 degreesC. Probing the coordination and location of the Al atoms, all the catalysts appeared to have mostly tetrahedral aluminum, up to 95% of the total Al amount for the proton exchanged AI(NO3)(3) incorporated sample.