64 resultados para selection of tenderers
Resumo:
Dizygotic twinning in humans is influenced by genetic factors suggesting inherited variation affects follicle development and predisposes to double ovulations. In a previous study, we conducted a detailed examination of follicle development and variation in hormone concentrations during the menstrual cycle in mothers of DZ twins (MODZT) compared with an age-matched control group of mothers of singletons. We did not detect differences in FSH concentrations between mothers of twins and mothers of singletons. Serum inhibin concentrations were measured by a radioimmunoassay that did not distinguish between dimeric inhibin A and B forms and free inhibin alpha subunit. We therefore analyzed the samples from this study with specific assays to determine whether concentrations of inhibin A and B were different between MODZT and controls and therefore contribute to the twinning phenotype. There were no significant differences between MONT with single ovulations and control women in inhibin A and B concentrations during the cycle, including the critical period for the selection of the dominant follicle. These data suggest that the genetic cause of twinning is not associated with changes in FSH concentrations or recognised feedback mechanisms regulating FSH release.
Resumo:
The objectives of this study were: (1) to quantify the genetic variation in foliar carbon isotope composition (delta(13)C) of 122 clones of ca. 4-year-old F-1 hybrids between slash pine (Pinus elliottii Engelm var. elliottii) and Caribbean pine (Pinus caribaea var. hondurensis Barr.,et Golf.) grown at two field experimental sites with different water and nitrogen availability in southeast Queensland, Australia, in relation to tree growth and foliar nitrogen concentration (N-mass); and (2) to assess the potential of using delta(13)C measurements, in the foliage materials collected from the clone hedges at nursery and the 4-year-old tree canopies in the field, as an indirect index of tree water use efficiency for selecting elite F-1 hybrid pine clones with improved tree growth. There were significant differences in foliar delta(13)C between the nursery hedges and the 4-year-old tree canopies in the field, between the summer and winter seasons, between the two experimental sites, and between the upper outer and lower outer canopy positions sampled. This indicates that delta(13)C measurements in the foliage materials are significantly influenced by the sampling techniques and environmental conditions. Significant differences in foliar delta(13)C, at the upper outer canopy in both field experiments in summer and winter, were detected between the clones, and between the female parents of the clones. Clone means of tree height at age ca. 3 years were positively related to those of the upper outer canopy delta(13)C at both experimental sites in winter, but only for the wetter site in summer. There were positive, linear relationships between clone means of canopy delta(13)C and those of canopy N-mass, indicating that canopy photosynthetic capacity might be an important factor regulating the clonal variation in canopy delta(13)C. Significant correlations were found between clone means of canopy delta(13)C at both experimental sites in summer and winter, and between those at the upper outer and lower outer canopy positions. Mean clone delta(13)C for the nursery hedges was only positively related to mean clone stem diameter at 1.3 m height at age 3 years on the wetter site. The clone by site interaction for foliar delta(13)C at the upper outer canopy was significant only in summer. Overall, the relatively high genetic variance components for foliar delta(13)C and significant, positive correlations between clone means of foliar delta(13)C and tree growth have highlighted the potential of using foliar delta(13)C measurements for assisting in selection of the elite F-1 hybrid pine clones with improved tree growth. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Uptake of nutrients and water depends on the growth of roots through elongation of individual cells near the. root tip. Many of the numerous components of Type I primary cell walls, those of dicotyledons and monocotyledons other than grasses (Poaceae), have been determined, and many hypotheses have been proposed for the control of cell expansion. This important aspect of plant growth still needs elucidation, however. A model is proposed in which pectin, which occurs as a calcium (Ca) pectate gel between the load-bearing cellulose microfibrils and xyloglucan (XG) chains, controls the rate at which cells expand. It is considered that the increasing tension generated by the expanding cell is transmitted to interlocked XG chains and cellulose microfibrils. The resulting deformation of the embedded Ca pectate gel elicits the excretion of protons from the cytoplasm, possibly via compounds such as cell wall-associated kinases, that weakens the Ca pectate gel, permitting slippage of XG molecules through the action of expansin. Further slippage is prevented by deformation of the pectic gel, proton diffusion, and the transfer of residual tension to adjacent XG chains. Evidence for this model is based on the effects of pH, Ca, and aluminum (Al) on root elongation and on the reactions of these cations with Ca pectate. This model allows for genetic selection of plants and adaptation of individual plants to root environmental conditions.
Resumo:
Effects of soil water availability on transpiration efficiency (WUET), instantaneous water use efficiency (WUEi) and carbon isotope composition (delta(13)C) were investigated in 7-month-old plants of humid coastal (Gympie) and dry inland ( Hungry Hills) provenances of Eucalyptus cloeziana F. Muell. and in a dry inland provenance of E. argophloia Blakely (Chinchilla), supplied with 100 (W-100), 70 (W-70) and 50% (W-50) of their water requirements. At W-100, WUET of the three provenances were not significantly different but as available soil moisture decreased, E. argophloia produced greater biomass and demonstrated significantly higher WUET than either E. cloeziana provenance. Midday WUEi was not significantly affected by watering regime within each provenance but was lowest in E. argophloia. A decrease in soil water availability caused a consistent increase in delta(13)C values in all three provenances; however, delta(13)C values of E. argophloia in all three water regimes were significantly lower than those of E. cloeziana provenances, which did not differ significantly from each other. For all three provenances, delta(13)C was not correlated with WUEi but height and root collar diameter were negatively correlated to delta(13)C. There was little evidence of differences in delta(13)C, WUET and WUEi between E. cloeziana provenances but clear differences between E. cloeziana and E. argophloia. The high WUET, low WUEi and low delta(13)C for E. argophloia may have implications in the selection of Eucalyptus provenances for commercial forestry in low-rainfall regions.