111 resultados para regulatory RNA networks
Resumo:
Numerous studies have attempted to elucidate the cytokine networks involved in chronic periodontitis, often with conflicting results. A variety of techniques were used to study cells in situ, cells extracted from gingival tissues, peripheral blood mononuclear cells, purified cell populations, and T cell lines and clones. Bacterial components, including sonicates, killed cells, outer membrane components, and purified antigens, have all been used to stimulate cells in vitro, making comparisons of cytokine profiles difficult. As it is likely that different cells are present at different disease stages, the inability to determine disease activity clinically is a major limitation of all these studies. In the context of tissue destruction, cytokines such as IL-1, IL-6 and IL-18 are likely to be important, as are their regulating cytokines IL-10 and IL-11. In terms of the nature of the inflammatory infiltrate, two apparently conflicting hypotheses have emerged: one based on direct observations of human lesions, the other based on animal experimentation and the inability to demonstrate IL-4 mRNA in gingival extracts. In the first of these, Th1 responses are responsible for the stable lesion, while in the second Th2 responses are considered protective. Using Porphyromonas gingivalis specific T cell lines we have shown a tendency for IFN-gamma production rather than LL-I or IL-10 when antigen is presented with peripheral blood mononuclear cells which may contain dendritic cells. It is likely that the nature of the antigen-presenting cell is fundamental in determining the nature of the cytokine profile, which may in turn open up possibilities for new therapeutic modalities.
Resumo:
1. The past 15 years has seen the emergence of a new field of neuroscience research based primarily on how the immune system and the central nervous system can interact. A notable example of this interaction occurs when peripheral inflammation, infection or tissue injury activates the hypothalamic- pituitary-adrenal axis (HPA). 2. During such assaults, immune cells release the pro- inflammatory cytokines interleukin (IL)-1, IL-6 and tumour necrosis factor-alpha into the general circulation. 3. These cytokines are believed to act as mediators for HPA axis activation. However, physical limitations of cytokines impede their movement across the blood-brain barrier and, consequently, it has been unclear as to precisely how and where IL-1beta signals cross into the brain to trigger HPA axis activation. 4. Evidence from recent anatomical and functional studies suggests two neuronal networks may be involved in triggering HPA axis activity in response to circulating cytokines. These are catecholamine cells of the medulla oblongata and the circumventricular organs (CVO). 5. The present paper examines the role of CVO in generating HPA axis responses to pro-inflammatory cytokines and culminates with a proposed model based on cytokine signalling primarily involving the area postrema and catecholamine cells in the ventrolateral and dorsal medulla.
Resumo:
Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr and tat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelled gag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently as vpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.
Resumo:
Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback regulation by valine. A similar arrangement was demonstrated recently for yeast AHAS, and a putative regulatory subunit of tobacco AHAS has also been reported. In this latter case, the enzyme reconstituted from its purified subunits remained insensitive to feedback inhibition, unlike the enzyme extracted from native plant sources. Here we have cloned, expressed in Escherichia coil, and purified the AHAS regulatory subunit of Ambidopsis thaliana. Combining the protein with the purified A. thaliana catalytic subunit results in an activity stimulation that is sensitive to inhibition by valine, leucine, and isoleucine. Moreover, there is a strong synergy between the effects of leucine and valine, which closely mimics the properties of the native enzyme. The regulatory subunit contains a sequence repeat of approximately 180 residues, and we suggest that one repeat binds leucine while the second binds valine or isoleucine. This proposal is supported by reconstitution studies of the individual repeats, which were also cloned, expressed, and purified. The structure and properties of the regulatory subunit are reminiscent of the regulatory domain of threonine deaminase (EC 4.2.1.16), and it is suggested that the two proteins are evolutionarily related.
Resumo:
Using a random sample of university students to test general strain theory (GST), this study expanded on previous tests of strain theory in two ways. First, situational anger was measured, a construct that had not been used thus far in assessments of general strain. In addition, this research examined the role of social support networks as a conditioning influence on the effects of strain and anger on intentions to commit three types of criminal behavior (serious assault, shoplifting, and driving under the influence of alcohol [DUI]). The results provided mixed support for GST. While the link between anger and crime was confirmed, the nature of that relationship in some cases ran counter to the theory. Moreover, the evidence indicated that the role of social support networks was complex, and varied as a conditioning influence on intentions to engage in criminal activities. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Around 98% of all transcriptional output in humans is noncoding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.