142 resultados para regularly entered default judgment set aside without costs
Resumo:
The nervous system of temnocephalid flatworms consists of the brain and three pairs of longitudinal connectives extending into the trunk and tail. The connectives are crosslinked by an invariant number of regularly spaced commissures. Branches of the connectives innervate the tentacles of the head and the sucker organ in the tail. A set of nerve rings encircling the pharynx and connected to the brain and connectives constitute the pharyngeal nervous system. The nervous system is formed during early embryogenesis when the embryo represents a multilayered mesenchymal mass of cells. Gastrulation and the formation of separate epithelial germ layers that characterize most other animal groups are absent. The brain arises as a bilaterally symmetric condensation of postmitotic cells in the deep layers of the anterior region of the embryonic mesenchyme. The pattern of axon outgrowth, visualized by labeling with anti-acetylated tubulin (acTub) antibody, shows marked differences from the pattern observed in other flatworm taxa. in regard to the number of neurons that express the acTub epitope. Acetylated tubulin is only expressed in neurons that form long axon tracts. In other flatworm species, such as the typhloplanoid Mesostoma and the polyclad Imogine, which were investigated by us with the acTub antibody (Hartenstein and Ehlers [2000] Dev. Genes Evol. 210:399-415; Younossi-Hartenstein and Hartenstein [2000] Dev. Genes Evol. 210:383-398), only a small number of pioneer neurons become acTub positive during the embryonic period. By contrast, in temnocephalids, most, if not all, neurons express acTub and form long, large-diameter axons. Initially, the brain commissure, pharyngeal nerve ring, and the connectives are laid down. Commissural tracts and tentacle nerves branching off the connectives appear later. We speculate that the precocious differentiation of the nervous system may be related to the fact that temnocephalids move by muscle action, and possess a massive and complex muscular system when they hatch. In addition, they have muscular specializations such as the anterior tentacles and the posterior sucker that are used as soon as they hatch. By contrast, juveniles of Mesostoma and larvae of polyclads move predominantly by ciliary action that may not require a complex neural circuitry for coordination. (C) 2001 Wiley-Liss, Inc.
Resumo:
In this paper, we look at three models (mixture, competing risk and multiplicative) involving two inverse Weibull distributions. We study the shapes of the density and failure-rate functions and discuss graphical methods to determine if a given data set can be modelled by one of these models. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In studying the penetration of water-soluble surfactants into water-insoluble monolayers the main theoretical problem is to find a relationship that would enable the amount of surfactant that has entered the monolayer to be calculated from a set of equilibrium surface pressure-area isotherms. Despite many attempts, no current theory gives satisfactory results when applied to experimental data (Langmuir 14 (1998) 2148). One possible reason is that equilibrium had not been established when the surface pressure-area curves were measured. The three experiments reported here suggest that equilibrium is extremely difficult to establish in such systems when the area is low or the surface pressure is high. The essence of these experiments is to try to reach the same final condition by two different routes. In the first route, the one nearly always used in equilibrium penetration measurements, the surfactant is injected under the expanded monolayer, which is then slowly compressed in steps, with time allowed at each step for a steady surface pressure to be attained. In the second procedure, the monolayer is first compressed to a high surface pressure and the surfactant then injected. A stepped expansion isotherm may then be observed. Surface pressure-area per monolayer molecule isotherms, reflection spectra, and slow neutron reflectivity data all show the same pattern: if the surfactant was allowed to penetrate while the monolayer was in an expanded state, it was not completely removed when the monolayer was compressed; but if the monolayer was in a highly compressed state when exposed to the surfactant little penetration took place until the film was expanded. There thus appear to be very large energy barriers to the ejection of surfactant from a compressed monolayer and to the penetration of surfactant into a compressed monolayer. Although these experiments have some limitations, it now seems likely that at least some of the penetration data used in evaluating the various thermodynamic treatments of equilibrium penetration were not equilibrium data. (C) 2001 Elsevier Science B.V. All rights reserved.