141 resultados para reaction rate
Resumo:
Gastropod shells consist of two crystal types of calcium carbonate, an outer, prismatic calcite layer and an inner nacreous layer made of aragonite. In cross-section, the nacre of the nacreous layer appears to have a regular brick-like microstructure composed of thin laminae of aragonite crystals, separated by very thin sheets of protein (Lutz and Rhoads, 1980; Nakahara, 1983). In abalone (Genus, Haliotis) and other gastropods, thin layers of non-lamellar pigmented material occur within the nacre and have been termed alternatively, fine lines, growth rings or growth lines (Shepherd et al., 1995). It has been suggested that these pigmented layers are small, prismatic, calcite layers (Shepherd and Avalos-Borja, 1997; Zaremba et al., 1996) but investigations using a Raman laser in Haliotis rubra show that they contain aragonite rather than calcite (Hawkes et al, 1996). Day and Fleming (1992) suggest that the occurrence of pigmented layers is correlated with regular exogenous cues such as reproduction or temperature changes and indeed in some species, pigmented layers in the shell can be used to age abalone (review: Shepherd and Triantafillos, 1997). However, McShane and Smith (1992) suggest that pigmented layers can occur irregularly and therefore may be unreliable indicators of age.
Resumo:
General measures of reaction to noise, which assess the respondent's perceived affectedness or dissatisfaction, appear to be more valid and internally consistent than more narrow measures, such as specific assessment of noise annoyance. However, the test-retest reliability of general and specific measures has yet to be compared. As a part of the large-scale Sydney Airport Health Study, 97 respondents participated in the same interview twice, several weeks apart. Test-retest reliabilities were found to be significant (p
Resumo:
Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We use the finite element method to simulate the rock alteration and metamorphic process in hydrothermal systems. In particular, we consider the fluid-rock interaction problems in pore-fluid saturated porous rocks. Since the fluid rock interaction takes place at the contact interface between the pore-fluid and solid minerals, it is governed by the chemical reaction which usually takes place very slowly at this contact interface, from the geochemical point of view. Due to the relative slowness of the rate of the chemical reaction to the velocity of the pore-fluid flow in the hydrothermal system to be considered, there exists a retardation zone, in which the conventional static theory in geochemistry does not hold true. Since this issue is often overlooked by some purely numerical modellers, it is emphasized in this paper. The related results from a typical rock alteration and metamorphic problem in a hydrothermal system have shown not only the detailed rock alteration and metamorphic process, but also the size of the retardation zone in the hydrothermal system. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
The number of repeats in repetitive DNA like micro- and minisatellites is often determined by polymerase chain reaction (PCR). When we counted repeats in an array of mitochondrial repeats in the cattle tick (Boophilus microplus) we found that the number of repeats increased during PCR. Multiplication of the repeats was independent of the primers used to amplify the region, the PCR annealing temperature and the length of the PCR product. The use of PCR to determine the number of repeats in arrays needs to be reassessed. For long repeats, a subset of samples should always be analysed by Southern blot hybridization to confirm the PCR results.
Resumo:
The effect that the difficulty of the discrimination between task-relevant and task-irrelevant stimuli has on the relationship between skin conductance orienting and secondary task reaction time (RT) was examined. Participants (N = 72) counted the number of longer-than-usual presentations of one shape (task-relevant) and ignored presentations of another shape (task-irrelevant). The difficulty of discriminating between the two shapes varied across three groups (low, medium, and high difficulty). Simultaneous with the primary counting task, participants performed a secondary RT task to acoustic probes presented 50, 150, and 2000 ms following shape onset. Skin conductance orienting was larger, and secondary RT at the 2000 ms probe position was slower during task-relevant shapes than during task-irrelevant shapes in the low-difficulty group. This difference declined as the discrimination difficulty was increased, such that there was no difference in the high-difficulty group. Secondary RT was slower during task-irrelevant shapes than during task-relevant shapes only in the medium-difficulty group-and only at the 150 ms probe position in the first half of the experiment. The close relationship between autonomic orienting and secondary RT at the 2000 ms probe position suggests that orienting reflects the resource allocation that results from the number of matching features between a stimulus input and a mental representation primed as significant.
Resumo:
We describe a method by which the decoherence time of a solid-state qubit may be measured. The qubit is coded in the orbital degree of freedom of a single electron bound to a pair of donor impurities in a semiconductor host. The qubit is manipulated by adiabatically varying an external electric field. We show that by measuring the total probability of a successful qubit rotation as a function of the control field parameters, the decoherence rate may be determined. We estimate various system parameters, including the decoherence rates due to electromagnetic fluctuations and acoustic phonons. We find that, for reasonable physical parameters, the experiment is possible with existing technology. In particular, the use of adiabatic control fields implies that the experiment can be performed with control electronics with a time resolution of tens of nanoseconds.
Resumo:
High removal rate (up to 16.6 mm(3)/s per mm) grinding of alumina and alumina-titania was investigated with respect to material removal and basic grinding parameters using a resin-bond 160 mu m grit diamond wheel at the speeds of 40 and 160 m/s, respectively. The results show that the material removal for the single-phase polycrystalline alumina and the two-phase alumina-titania composite revealed identical mechanisms of microfracture and grain dislodgement under the grinding conditioned selected. There were no distinct differences in surface roughness and morphology for both materials ground at either conventional or high speed. An increase in material removal rate did not necessarily worsen the surface toughness for the two materials at both speeds. Also the grinding forces for the two ceramics demonstrated similar characteristics at any grinding speeds and specific removal rates. Both normal and tangential grinding forces and their force ratios at the high speed were lower than those at the conventional speed, regardless of removal rates. An increase in specific removal rate caused more rapid increases in normal and tangential forces obtained at the conventional grinding speed than those at the high speed. Furthermore, it is found that the high speed grinding at all the removal rates exerted a great amount of coolant-induced normal forces in grinding zone, which were 4-6 times higher than the pure normal grinding forces. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fructan:fructan fructosyltransferase (FFT) activity was purified about 300-fold from leaves of Lolium rigidura Gaudin by a combination of affinity chromatography, gel filtration, anion exchange and isoelectric focusing. The FFT activity was free of sucrose:sucrose fructosyltransferase and invertase activities. It had an apparent pI of 4.7 as determined by isoelectric focusing, and a molecular mass of about 50000 (gel filtration). The FFT activity utilized the trisaccharides 1-kestose and 6(G)-kestose as sole substrates, but was not able to use 6-kestose as sole substrate. The FFT activity was not saturated when assayed at concentrations of 1-kestose, 6(G)-kestose or (1,1)-kestotetraose of up to 400 mM The rate of reaction of the FFT activity was most rapid when assayed with 1-kestose and was less rapid when assayed with 6(G)-kestose, (1,1)-kestotetraose or (1,1,1)-kestopentaose. The FFT activity when assayed at a relatively high concentration of enzyme activity (approximately equivalent to about half the activity in crude extracts per gram fresh mass) did not synthesize fructan of degree of polymerization > 6, even during extended assays of up to 10 h. When assayed with a combination of 1-kestose and uniformly labelled [C-14]sucrose as substrates, the major reaction was the transfer of a fructosyl residue from 1-kestose to sucrose resulting in the re-synthesis of 1-kestose. Tetrasaccharide and 6(G)-kestose were also synthesized. When assayed with 6(G)-kestose and [C-14]sucrose as substrates, the major reaction of the FFT activity was the synthesis of tetrasaccharide. However, some synthesis of 1-kestose and re-synthesis of 6(G)-kestose also occurred. When 6, kestose was the sole substrate for the FFT activity, synthesis of tetrasaccharide was 2.7 to 3.4-fold slower than when 1-kestose was used as the sole substrate. Owing to differences in the fructan:sucrose fructosyltransferase activity of the FFT with each of the trisaccharides, net synthesis of tetrasaccharide by the FFT was altered significantly in the presence of sucrose. The magnitude of this effect depended on the concentration of the trisaccharides. In the presence of sucrose, 6(G)-kestose could be a substrate of equivalent importance to 1-kestose for synthesis of tetrasaccharide.
Resumo:
The syntheses and characterisation of the new macrocyclic hexaamine trans-(5(S),7(S),12(R),14(R)-tetramethyl)-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L-6) and its Co-III complex are reported. The X-ray crystal structural analyses of [CoL6]Cl-2(ClO4) [monoclinic, space group C2/c, a = 16.468(3) Angstrom, b = 9.7156(7) Angstrom, c = 15.070(3) Angstrom, beta = 119.431(8)degrees, Z = 4] and the closely related cis-diamino-substituted macrocyclic complex [CoL2](ClO4)(3) . 2H(2)O (L-2 = cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) [orthorhombic, space group Pna2(1), a = 16.8220(8) Angstrom, b = 10.416(2) Angstrom, c = 14.219(3) Angstrom, Z = 4] reveal significant variations in the observed Co-N bond lengths and coordination geometries, which may be attributed to the trans or cis disposition of the pendent primary amines. The Co-III/II self-exchange electron transfer rate constants for these and other closely related hexaamines have been determined, and variations of some 2 orders of magnitude are found between pairs of trans and cis isomeric Co-III complexes.