95 resultados para negative gene regulation
Resumo:
Cells of the mononuclear phagocyte lineage possess receptors for macrophage colony-stimulating factor (CSF-1) encoded by the c-fms protooncogene and respond to CSF-1 with increased survival, growth, differentiation, and reversible changes in function. The c-fms gene is itself a macrophage differentiation marker. In whole mount analyses of mRNA expression in embryos, c-fms is expressed at very high levels on placental trophoblasts. It is detectable on individual cells in the yolk sac around 8.5 to 9 days postcoitus, appears on isolated cells in the head of the embryo around 9.5 dpc, and appears on numerous cells throughout the embryo by day 10.5. The extent of c-fms expression is much greater than for other macrophage-specific genes including lysozyme and a macrophage-specific protein tyrosine phosphatase. Our studies of the cis-acting elements of the c-fms promoter have indicated a key role for collaboration between the macrophage-specific transcription factor, Pu.1, which functions in determining the site of transcription initiation, and other members of the Ets transcription factor family. This is emerging as a common pattern in macrophage-specific promoters. We have shown that two PU box elements alone can function as a macrophage-specific promoter. The activity of both the artifical promoter and the c-fms promoter is activated synergistically by coexpression of Pu.1 and another Ets factor, c-Ets-2. A 3.5kb c-fms exon 2 promoter (but not the 300bp proximal promoter) is also active in a wide diversity of tumor cell lines. The interesting exception is the melanoma cell line K1735, in which the promoter is completely shut down and expression of c-fms causes growth arrest and cell death. The activity of the exon 2 promoter in these nonmacrophages is at least as serum responsive as the classic serum-responsive promoter of the c-fos gene. It is further inducible in nonmacrophages by coexpression of the c-fms product. Unlike other CSF-1/c-fms-responsive promoters, the c-fms promoter is not responsive to activated Ras even when c-Ets-2 is coexpressed. In most lines, production of full length c-fms is prevented by a downstream intronic terminator, but in Lewis lung carcinoma, read-through does occur, and expression of both c-fms and other macrophage-specific genes such as lysozyme and urokinase becomes detectable in conditions of serum deprivation. (C) 1997 Wiley-Liss, Inc.
Resumo:
Familial Mediterranean fever (FMF) is a recessively inherited disorder characterized by dramatic episodes of fever and serosal inflammation. This report describes the cloning of the gene likely to cause FMF from a 115-kb candidate interval on chromosome 16p. Three different missense mutations were identified in affected individuals, but not in normals. Haplotype and mutational analyses disclosed ancestral relationships among carrier chromosomes in populations that have been separated for centuries. The novel gene encodes a 3.7-kb transcript that is almost exclusively expressed in granulocytes. The predicted protein, pyrin, is a member of a family of nuclear factors homologous to the Ro52 autoantigen. The cloning of the FMF gene promises to shed light on the regulation of acute inflammatory responses.
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
The cDNA sequence for insulin-like growth factor 2 (IGF-2) was determined from the liver of the marsupial brushtail possum (Trichosurus vulpecula) using reverse transcription followed by polymerase chain reaction (RT-PCR) with gene-specific primers. The 359 bp of possum sequence encompassed the mature peptide, 27 bp of the signal peptide, and 125 bp of the E-peptide. Alignment of the deduced amino acid sequence with those from other species indicated that the mature peptide was 71 amino acids in length, 4 amino acids longer than most other mammals. At both the nucleotide and amino acid levels there was a high degree of sequence identity with IGF-2 from other mammalian and nonmammalian species. Amino acid identity ranged from 94.4% with a variant form of human IGF-2 to 80.3% with zebrafinch IGF-2. Northern analysis revealed that radiolabeled possum IGF-2, cDNA hybridized to multiple transcripts in the liver of both adult possums and 150-day-old pouch young and that the overall level of expression was greater in pouch young. Semiquantitative RT-PCR with total RNA from liver samples of pouch young aged 12 to 150 days postpartum and adults confirmed that IGF-2 gene expression was two to three times more abundant in pouch young than in adults but there was no significant change in the level of expression during pouch life. Unlike other mammalian species, in which there is a decline in levels of liver IGF-2 gene expression around the time of birth, levels in the marsupial brushtail possum remain elevated for at least 150 days after birth. This suggests that the decline in liver IGF-2 expression in marsupials and eutherians occurs at a similar stage of development and may reflect a role for this growth factor during the postnatal growth and development of the marsupial, (C) 2001 Academic Press.
Resumo:
All cells require inorganic sulfate for normal function. Sulfate is among the most important macronutrients; in cells and is the fourth most abundant anion in human plasma (300 muM). Sulfate is the major sulfur source in many organisms, and because it is a hydrophilic anion that cannot passively cross the lipid bilayer of cell membranes, all cells require a mechanism for sulfate influx and efflux to ensure an optimal supply of sulfate in the body. The class of proteins involved in moving sulfate into or out of cells is called sulfate transporters. To date, numerous sulfate transporters have been identified in tissues and cells from many origins. These include the renal sulfate transporters NaSi-1 and sat-1, the ubiquitously expressed diastrophic dysplasia sulfate transporter DTDST, the intestinal sulfate transporter DRA that is linked to congenital chloride diarrhea, and the erythrocyte anion exchanger AE1. These transporters have only been isolated in the last 10-15 years, and their physiological roles and contributions to body sulfate homeostasis are just now beginning to be determined. This review focuses on the structural and functional properties of mammalian sulfate transporters and highlights some of regulatory mechanisms that control their expression in vivo, under normal physiological and pathophysiological states.
Resumo:
Transforming growth factor beta1 treatment of keratinocytes results in a suppression of differentiation, an induction of extracellular matrix production, and a suppression of growth. In this study we utilized markers specific for each of these functions to explore the signaling pathways involved in mediating these transforming-growth-factor-beta1-induced activities. In the first instance, we found that the induction of extracellular matrix production (characterized by 3TP-Lux reporter activity) was induced in both keratinocytes and a keratinocyte-derived carcinoma cell line, SCC25, in a dose-dependent manner. Furthermore, transforming growth factor beta1 also suppressed the differentiation-specific marker gene, transglutaminase type 1, in both keratinocytes and SCC25 cells. In contrast, transforming growth factor beta1 inhibited proliferation of keratinocytes but did not cause growth inhibition in the SCC25 cells. Transforming-growth-factor-beta1-induced growth inhibition of keratinocytes was characterized by decreases in DNA synthesis, accumulation of hypophosphorylated Rb, and the inhibition of the E2F:Rb-responsive promoter, cdc2, and an induction of the p21 promoter. When the negative regulator of transforming growth factor beta1 signaling, SMAD7, was overexpressed in keratinocytes it could prevent transforming-growth-factor-beta1-induced activation of the 3TP-Lux and the p21 promoter. SMAD7 could also prevent the suppression of the transglutaminase type 1 by transforming growth factor beta1 but it could not inhibit the repression of the cdc2 promoter. These data indicate that the induction of 3TP-Lux and p21 and the suppression of transglutaminase type 1 are mediated by a different proximate signaling pathway to that regulating the suppression of the cdc2 gene. Combined, these data indicate that the regulation of transforming growth factor beta1 actions are complex and involve multiple signaling pathways.
Resumo:
Background: Cross-sectional studies have demonstrated that a specific polymorphism (allele 2 of both IL-1A +4845 and IL-1B +3954) in the IL-1 gene cluster has been associated with an increased susceptibility to severe periodontal disease and to an increased bleeding tendency during periodontal maintenance. The aim of the present study was to investigate the relationship between IL-1 genotype and periodontitis in a prospective longitudinal study in an adult population of essentially European heritage. Methods: From an ongoing study of the Oral Care Research Programme of The University of Queensland, 295 subjects consented to genotyping for IL-1 allele 2 polymorphisms. Probing depths and relative attachment levels were recorded at baseline, 6, 12, 24, 36, 48 and 60 months using the Florida probe. Periodontitis progression at a given site was defined as attachment loss greater than or equal to2 mm at any observation period during the 5 years of the study and the extent of disease progression determined by the number of sites showing attachment loss. Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans and Prevotella intermedia were detected using ELISA. Results: 38.9% of the subjects were positive for the composite IL-1 genotype. A relationship between the IL-1 positive genotype and increased mean probing pocket depth in non-smokers greater than 50 years of age was found. Further, IL-1 genotype positive smokers and genotype positive subjects with P. gingivalis in their plaque had an increase in the number of probing depths greater than or equal to3.5 mm, There was a consistent trend for IL-1 genotype positive subjects to experience attachment loss when compared with IL-1 genotype negative subjects. Conclusion: The results of this study have shown an interaction of the IL-1 positive genotype with age, smoking and P. gingivalis which suggests that IL-1 genotype is a contributory but non-essential risk factor for periodontal disease progression in this population.
Resumo:
The oncogene GLI1 is involved in the formation of basal cell carcinoma and other tumor types as a result of the aberrant signaling of the Sonic hedgehog-Patched pathway. In this study, we have identified alternative GLI1 transcripts that differ in their 5' untranslated regions (UTRs) and are generated by exon skipping. These are denoted (alpha -UTR, beta -UTR, and gamma -UTR according to the number of noncoding exons possessed (three, two, and one, respectively). The alpha- and beta -UTR forms represent the major Gli1 transcripts expressed in mouse tissues, whereas the gamma -UTR is present at relatively low levels but is markedly induced in mouse skin treated with 12-O-tetradecanoylphorbol 13-acetate, Transcripts corresponding to the murine beta and gamma forms were identified in human tissues, but significantly, only the gamma -UTR form was present in basal cell carcinomas and in proliferating cultures of a keratinocyte cell line. Flow cytometry analysis determined that the gamma -UTR variant expresses a heterologous reporter gene 14-23-fold higher than the alpha -UTR and 5-13-fold higher than the beta -UTR in a variety of cell types. Because expression of the gamma -UTR variant correlates with proliferation, consistent with a role for GLI1 in growth promotion, up-regulation of GLI1 expression through skipping of 5' noncoding exons may be an important tumorigenic mechanism.
Resumo:
Previous studies in our laboratory have shown that the pleiotropic cytokine leukemia inhibitory factor (LIF) inhibits neointimal formation and the development and progression of atherosclerotic and restenotic lesions in a rabbit model of disease. The present study demonstrates an upregulation of both the LIF receptor (LIFR)-α subunit and the signal transducing subunit gp130 following endothelial denudation of the carotid artery by balloon catheter. Continuous infusion of LIF (30 μg/kg/day) resulted in the downregulation of LIFR-a in injured arteries in vivo. Similarly, smooth muscle cells in vitro treated with LIF exhibited a time-dependent reduction in LIFR-a protein expression and the subsequent reduction in transcription of the TIMP-1 gene. However, in the presence of an intact endothelium, LIFR-a was upregulated in response to LIF, and accordingly the downstream induction of iNOS expression was also increased. Thus, LIF exerts more potent antiatherogenic effects in the vasculature when the endothelium is intact.
Resumo:
Using differential display-polymerase chain reaction, we identified a novel gene sequence, designated solid tumor-associated gene 1 (STAG1), that is upregulated in renal cell carcinoma (RCC). The full-length cDNA (4839 bp) encompassed the recently reported androgen-regulated prostatic cDNA PMEPA1 and so we refer to this gene as STAG1/PMEPA1, Two STAG1/PMEPA1 mRNA transcripts of approximately 2.7 an 5 kb, with identical coding regions but variant 3' untranslated regions, were predominantly expressed in normal prostate tissue and at lower levels in the ovary. The expression of this gene was upregulated in 87% of RCC samples and also was upregulated in stomach and rectal adenocarcinomas. In contrast, STAG1/PMEPA1 expression was barely detectable in leukemia and lymphoma samples, Analysis of expressed sequence tag databases showed that STAG1/PMEPA1 also was expressed in pancreatic, endometrial, and prostatic adenocarcinomas. The STAG1/PMEPA1 cDNA encodes a 287-amino-acid protein containing a putative transmembrane domain and motifs that suggest that it may bind src homology 3- and tryptophan tryptophan domain-containing proteins. This protein shows 67% identity to the protein encoded by the chromosome 18 open reading frame 1 gene. Translation of STAG1/PMEPA1 mRNA in vitro showed two products of 36 and 39 kDa, respectively, suggesting that translation may initiate at more than one site. Comparison to genomic clones showed that STAG1/PMEPA1 was located on chromosome 20q13 between microsatellite markers D20S183 and D20S173 and spanned four exons and three introns. The upregulation of this gene in several solid tumors indicated that it may play an important role in tumorigenesis. (C) 2001 Wiley-Liss, Inc.
Resumo:
Using differential display PCR, we identified a novel gene upregulated in renal cell carcinoma. Characterization of the full-length cDNA and gene revealed that the encoded protein is a human homologue of the Drosophila melanogaster Tweety protein, and so we have termed the novel protein TTYH2. The orthologous mouse cDNA was also identified and the predicted mouse protein is 81% identical to the human protein. The encoded human TTYH2 protein is 534 amino acids and, like the other members of the tweety-related protein family, is a putative cell surface protein with five transmembrane regions. TTYH2 is located at 17q24; it is expressed most highly in brain and testis and at lower levels in heart, ovary, spleen, and peripheral blood leukocytes. Expression of this gene is upregulated in 13 of 16 (81%) renal cell carcinoma samples examined. In addition to a putative role in brain and testis, the overexpression of TTYH2 in renal cell carcinoma suggests that it may have an important role in kidney tumorigenesis.
Resumo:
The immunoregulatory signaling (IRS) family includes several molecules, which play major roles in the regulation of the immune response. The CMRF-35A and CMRF-35H molecules are two new members of the IRS family of molecules, that are found on a wide variety of haemopoietic lineages. The extracellular functional interactions of these molecules is presently unknown, although CMRF-35H on initiate an inhibitory signal and is internalized when cross-linked. In this paper, we described the gene structure for the CMRF-35A gene and its localization to human chromosome 17. The gene consists of four exons spanning approximately 4.5 kb. Exon 1 encodes the 5' untranslated region and leader sequence, exon 2 encodes the immunoglobulin (Ig)-like domain, exon 3 encodes the membrane proximal region and exon 4 encodes the transmembrane region, the cytoplasmic tail and the 3' untranslated region. A region in the 5' flanking sequence of the CMRF-35A gene, that promoted expression of a reporter gene was identified. The genes for the CMRF-35A and CMRF-35H molecules are closely linked on chromosome 17. Similarity between the Ig-like exons and the preceding intron of the two genes suggests exon duplication was involved in their evolution. We also identified a further member of the CMRF-35 family, the CMRF-35J pseudogene. This gene appears to have arisen by gene duplication of the CMRF-35A gene. These three loci-the CMRF-35A, CMRF-35J and CMRF-35H genes-form a new complex of IRS genes on chromosome 17.
A highly conserved c-fms gene intronic element controls macrophage-specific and regulated expression
Resumo:
The c fins gene encodes the receptor for macrophage colony-stimulating factor-1. This gene is expressed selectively in the macrophage cell lineage. Previous studies have implicated sequences in intron 2 that control transcript elongation in tissue-specific and regulated expression of c -fms. Four macrophage-specific deoxyribonuclease I (DNase I)-hypersensitive sites (DHSS) were identified within mouse intron 2. Sequences of these DHSS were found to be highly conserved compared with those in the human gene. A 250-bp region we refer to as the fins intronic regulatory element (FIRE), which is even more highly conserved than the c-fins proximal promoter, contains many consensus binding sites for macrophage-expressed transcription factors including Spl, PU.1, and C/EBP. FIRE was found to act as a macrophage-specific enhancer and as a promoter with an antisense orientation preference in transient transfections. In stable transfections of the macrophage line RAW264, as well as in clones selected for high and low-level c -fms mRNA expression, the presence of intron 2 increased the frequency and level of expression of reporter genes compared with those attained using the promoter alone. Removal of FIRE abolished reporter gene expression, revealing a suppressive activity in the remaining intronic sequences. Hence, FIRE is shown to be a key regulatory element in the fins gene.
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. Human platelet-derived EPF shares amino acid sequence identity with chaperonin 10 (Cpn10), a mitochondrial matrix protein which functions as a molecular chaperone. The striking differences in cellular localization and function of the two proteins suggest differential regulation of production reflecting either alternative transcription of the same gene or transcription from different genes. In mammals and more distantly related genera, there is a large gene family with homology to CPN 10 cDNA, which includes intronless copies of the coding sequence. To determine whether this could represent the gene for EPF, we have screened a mouse genomic library and sequenced representative Cpn10 family members, looking for a functional gene distinct from that of Cpn 10, which could encode EPF. Eight distinct genes were identified. Cpn10 contains introns, while other members are intronless. Six of these appear to be pseudogenes, and the remaining member, Cpn10-rs1, would encode a full-length protein. The 309-bp open reading frame (ORF) is identical to that of mouse Cpn10 cDNA with the exception of three single-base changes, two resulting in amino acid changes. Only one further single nucleotide difference between the Cpn10-rs1 and Cpn10 cDNAs is observed, located in the 3' UTR. Single nucleotide primer extension was applied to discriminate between Cpn10-rs1 and Cpn10 expression. Cpn10, which is ubiquitous, was detected in all tissue samples tested, whereas Cpn10-rs1 was expressed selectively. The pattern was completely coincident with known patterns of EPF activity, strongly suggesting that Cpn10-rs1 does encode EPF. The complete ORF of Cpn10-rs1 was expressed in E. coli. The purified recombinant protein was found to be equipotent with native human platelet-derived EPF in the bioassay for EPF, the rosette inhibition test.
Resumo:
The presence of an intrinsic renin-angiotensin system (RAS) in the rat epididymis has been previously established by showing the expression of several key RAS components, and in particular angiotensinogen, the indispensable element for the intracellular generation of angiotensin II. In this study, the possible involvement of this local epididymal RAS in the testicular effects of chronic hypoxia was investigated. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and by in situ hybridization histochemistry of the rat epididymis were used to show changes in localization and expression of angiotensinogen. Results from RT-PCR analysis demonstrated that chronic hypoxia caused a marked decrease (60%) in the expression of angiotensinogen mRNA, when compared with that in the normoxic epididymis. Western blot analysis demonstrated a less decrease (35%) in the expression of angiotensinogen protein. In situ hybridization histochemistry showed that the reduced angiotensinogen mRNA in chronic hypoxia was specifically localized to the epididymal epithelium from the cauda, corpus and caput regions of the epididymis; a distribution similar to that of normoxic rats. It was concluded that chronic hypoxia decreases the transcriptional and translational expression of angiotensinogen, and thus local formation of angiotensin II, in the rat epididymis. (C) 2001 Elsevier Science B.V. All rights reserved.