67 resultados para layered architecture
Resumo:
The pore structure formation in bentonite, pillared with a mixed sol of silicon and titanium hydroxides and treated subsequently with quaternary ammonium surfactants, is investigated. The surfactant micelles act as a template, similar to their role in MCM41 synthesis. Because both the surfactant micelles and the sol particles are positively charged, it is greatly favorable for them to form meso-phase assembles in the galleries between the clay layers that bear negative charges. Besides, the sol particles do not bond the clay layers strongly as other kinds of pillar precursors do, so that the treatment with surfactants can result in radical structure changes in sol-pillared clays. This allows us to tailor the pore structure of these porous clays by choice of surfactant. The surfactant treatment also results in profound increases in porosity and improvement in thermal stability. Therefore, the product porous clays have great potential to be Used to deal with large molecules or at high operating temperatures. We also found that titanium in these samples is highly dispersed in the silica matrix rather than existing in the form of small particles of pure titania. Such highly dispersed Ti active centers may offer excellent activities for catalytic oxidation reactions such as alkanes into alcohols and ketones.
Resumo:
The distributions of the Eph-class receptors EphA4 and EphB 1, and their ligands ephrin-A2, ephrin-B1, and ephrin-B2, were analysed by immunostaining in the mouse inner ear. Complementary patterns of EphA4 and its potential ligand ephrin-A2 were found, with ephrin-A2 in many of the structures lining the cochlear duct and within the cochlear nerve cells, and EphA4 in the deeper structures underlying the cochlear duct and in the cells lining the nerve pathway. EphB1 and its potential ligands ephrin-B1 and ephrin-B2 showed a segregated layered expression in the lateral wall of the cochlear duct (the external sulcus), which together with EphA4 expressed in the area, form a four-layered structure with an alternating pattern of receptors and ligands in the different layers. This arrangement gives the potential for different bidirectional Eph-mediated interactions between each of the layers. The results suggest that the Eph system in the cochlea may have a role in maintaining cell segregation during phases of cochlear development. (C) 2002 Wiley-Liss, Inc.
Resumo:
Upper Devonian to Lower Carboniferous strata of the Campwyn Volcanics of east central Queensland preserve a substantial sequence of first-cycle volcaniclastic sedimentary and coeval volcanic rocks that record prolonged volcanic activity along the northern New England Fold Belt. The style and scale of volcanism varied with time, producing an Upper Devonian sequence of mafic volcano-sedimentary rocks overlain by a rhyolitic ignimbrite-dominated sequence that passes upward into a Lower Carboniferous limestone-bearing sedimentary sequence. We define two facies associations for the Campwyn Volcanics. A lower facies association is dominated by mafic volcanic-derived sedimentary breccias with subordinate primary mafic volcanic rocks comprising predominantly hyaloclastite and peperite. Sedimentary breccias record episodic and high energy, subaqueous depositional events with clastic material sourced from a mafic lava-dominated terrain. Some breccias contain a high proportion of attenuated dense, glassy mafic juvenile clasts, suggesting a syn-eruptive origin. The lower facies association coarsens upwards from a lithic sand-dominated sequence through a thick interval of pebble- to boulder-grade polymict volcaniclastic breccias, culminating in facies that demonstrate subaerial exposure. The silicic upper facies association marks a significant change in eruptive style, magma composition and the nature of eruptive sources, as well as the widespread development of subaerial depositional conditions. Crystal-rich, high-grade, low- to high-silica rhyolite ignimbrites dominate the base of this facies association. Biostratigraphic age controls indicate that the ignimbrite-bearing sequences are Famennian to lower-mid Tournaisian in age. The ignimbrites represent extra-caldera facies with individual units up to 40 m thick and mostly lacking coarse lithic breccias. Thick deposits of pyroclastic material interbedded with fine-grained siliceous sandstone and mudstone (locally radiolarian-bearing) were deposited from pyroclastic flows that crossed palaeoshorelines or represent syn-eruptive, resedimented pyroclastic material. Some block-bearing lithic-pumice-crystal breccias may also reflect more proximal subaqueous silicic explosive eruptions. Crystal-lithic sandstones interbedded with, and overlying the ignimbrites, contain abundant detrital volcanic quartz and feldspar derived from the pyroclastic deposits. Limestone is common in the upper part of the upper facies association, and several beds are oolitic (cf. Rockhampton Group of the Yarrol terrane). Overall, the upper facies association fines upward and is transgressive, recording a return to shallow-marine conditions. Palaeocurrent data from all stratigraphic levels in the Campwyn Volcanics indicate that the regional sediment-dispersal direction was to the northwest, and opposed to the generally accepted notion of easterly sediment dispersal from a volcanic arc source. The silicic upper facies association correlates in age and lithology to Early Carboniferous silicic volcanism in the Drummond (Cycle 1) and Burdekin Basins, Connors Arch, and in the Yarrol terranes of eastern Queensland. The widespread development of silicic volcanism in the Early Carboniferous indicates that silicic (rift-related) magmatism was not restricted to the Drummond Basin, but was part of a more substantial silicic igneous province.
Resumo:
A series of polyethylene-layered silicate nanocomposites has been studied as possible new candidates for rotational moulding. Two organically treated layered silicates were melt-compounded into a maleated linear low-density polyethylene host polymer at loadings of 6 and 9%, by weight. The morphology and properties of the nanocomposites were assessed by using dynamic mechanical thermal analysis, parallel-plate rheometry, wide-angle X-ray diffraction and transmission electron microscopy. The sintering behaviour of the nanocomposites was qualitatively assessed via hot-stage microscopy, indicating that the choice of nanofiller will play an important role in terms of producing nanocomposite materials with acceptable processability for rotational moulding. (C) 2003 Society of Chemical Industry.
Resumo:
Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.