94 resultados para insect pest


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many insect parasitoids that deposit their eggs inside immature stages of other insect species inactivate the cellular host defence to protect the growing embryo from encapsulation. Suppression of encapsulation by polydnavirus-encoded immune-suppressors correlates with specific alterations in hemocytes, mainly cytoskeletal rearrangements and actin-cytoskeleton breakdown. We have previously shown that the Cotesia rubecula polydnavirus gene product CrV1 causes immune suppression when injected into the host hemocoel. CrV1 is taken up by hemocytes although no receptors have been found to bind the protein. Instead CrV1 uptake depends on dimer formation, which is required for interacting with lipophorin, suggesting a CrV1-lipophorin complex internalisation by hemocytes. Since treatment of hemocytes with oligomeric lectins and cytochalasin D can mimic the effects of CrV1, we propose that some dimeric and oligomeric adhesion molecules are able to cross-link receptors on the cell surface and depolymerise actin by leverage-mediated clearance reactions in the hemolymph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we identified a large number of ultraconserved (uc) sequences in noncoding regions of human, mouse, and rat genomes that appear to be essential for vertebrate and amniote ontogeny. Here, we used similar methods to identify ultraconserved genomic regions between the insect species Drosophila melanogaster and Drosophila pseudoobscura, as well as the more distantly related Anopheles gambiae. As with vertebrates, ultraconserved sequences in insects appear to Occur primarily in intergenic and intronic sequences, and at intron-exon junctions. The sequences are significantly associated with genes encoding developmental regulators and transcription factors, but are less frequent and are smaller in size than in vertebrates. The longest identical, nongapped orthologous match between the three genomes was found within the homothorax (hth) gene. This sequence spans an internal exon-intron junction, with the majority located within the intron, and is predicted to form a highly stable stem-loop RNA structure. Real-time quantitative PCR analysis of different hth splice isoforms and Northern blotting showed that the conserved element is associated with a high incidence of intron retention in hth pre-mRNA, suggesting that the conserved intronic element is critically important in the post-transcriptional regulation of hth expression in Diptera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is critical that viruses are able to avoid the antiviral activities of interferon (IFN). We have shown previously that the human papillomavirus (HPV) is able to avoid IFN-alpha via interaction of the HPV-16 E7 protein with IFN regulatory factor-9 (IRF-9). Here, we investigated the details of the interaction using HPV-16 E7 peptide mapping to show that IRF-9 binds HPV-16 E7 in a domain encompassing amino acids 25-36. A closer examination of this region indicates this is a novel proline, glutamate, serine, and threonine-rich (PEST) domain, with a PEST score of 8.74. We have also mapped the region of interaction within IRF-9 and found that amino acids 354-393 play an important role in binding to HPV-16 E7. This region of IRF-9 encompasses the IRF association domain (IAD), a region important for protein-protein interaction central to IRF function. Finally, we used alanine-scanning mutagenesis to determine if E7-IRF-9 interaction was important for E7-mediated cellular transformation and found that the HPV-16 E7 mutants Y25A, E26A, S31A, S32A, and E35A, but not L28A and N29A, caused loss of transformation ability. Preliminary data suggest loss of IRF-9 interaction with E7 mutants correlated with transformation. Our work suggests E7- IRF- 9 interaction is important for the transforming ability of HPV-16 E7 and that HPV-16 E7 may interact with other IRF proteins that have IAD domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dorsalis complex contains some of the most economically important fruit fly pests of the Asia-Pacific regions, including Bactrocera dorsalis, Bactrocera papayae and Bactrocera carambolae. These species are morphologically indistinct and genetically very similar. We describe the development of 12 microsatellite markers isolated from a representative of the dorsalis complex, B. papayae. We show the potential utility of the B. papayae microsatellites and a set of microsatellites isolated from Bactrocera tryoni as population and species markers for the dorsalis complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ascoviruses (AVs) infect larvae of various insect pests belonging to the family Noctuidae. The result of AV infection in the hosts is cleavage of infected cells into vesicles, a unique feature of AV infection. Since insect cell lines facilitate the study of virus life cycles, attempts were made to analyze Heliothis virescens AV (HvAV3e) infection in several cell lines and compare cell pathology to larval infection. In this study, replication and cytopathological effects of HvAV3e on four different cell lines were investigated. HvAV3e replication was confirmed in three noctuid cell lines from Spodoptera frugiperda (Sf9) and Helicoverpa zea (BCIRL-Hz-AM1 and FB33). However, the virus did not replicate in the non-noctuid insect cell line from Pieris rapae (Pieridae). Despite replication of the virus in the three permissive cell lines, the cytopathological effects of the virus were significantly different from that of larval infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provides comprehensive documentation of silk production in the pest moth Helicoverpa armigera from gland secretion to extrusion of silk thread. The structure of the silk glands, accessory structures and extrusion apparatus are reported. The general schema of the paired silk glands follows that found for Lepidoptera. Morphology of the duct, silk press, muscle attachments and spigot are presented as a three-dimensional reconstruction and the cuticular crescent-shaped profile of the silk press is demonstrated in both open and closed forms with attendant muscle blocks, allowing advances in our knowledge of how the silk press functions to regulate the extrusion of silk. Growth of the spigot across instars is documented showing a distinctive developmental pattern for this extrusion device. Its shape and structure are related to use and load-bearing activity. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A remarkably diverse suite of spiroacetals including a novel member of the rare, branched chain class has been identified in the glandular secretions of Bactrocera tryoni, the most destructive horticultural pest in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The spatial heterogeneity of predator populations is an important component of ecological theories pertaining to predator-prey dynamics. Most studies within agricultural fields show spatial correlation (positive or negative) between mean predator numbers and prey abundance across a whole field over time but generally ignore the within-field spatial dimension. We used explicit spatial mapping to determine if generalist predators aggregated within a soybean field, the size of these aggregations and if predator aggregation was associated with pest aggregation, plant damage and predation rate. 2. The study was conducted at Gatton in the Lockyer Valley, 90 km west of Brisbane, Australia. Intensive sampling grids were used to investigate within-field spatial patterns. The first row of each grid was located in a lucerne field (10 m from interface) and the remaining rows were in an adjacent soybean field. At each point on the grid the abundance of foliage-dwelling and ground-dwelling pests and predators was measured, predation rates [using sentinel Helicoverpa armigera (Hubner) egg cards] and plant damage were estimated. Eight grids were sampled across two summer cropping seasons (2000/01, 2001/02). 3. Predators exhibited strong spatial patterning with regions of high and low abundance and activity within what are considered to be uniform soybean fields. Ground-dwelling and foliage-dwelling predators were often aggregated in patches approximately 40 m across. 4. Lycosidae (wolf spiders) displayed aggregation and were consistently more abundant within the lucerne, with a decreasing trap catch with distance from the lucrene/soybean interface. This trend was consistent between subsequent grids in a single field and between fields. 5. The large amount of spatial variability in within-field arthropod abundance (pests and predators) and activity (egg predation and plant damage) indicates that whole field averages were misleading. This result has serious implications for sampling of arthropod abundance and pest management decision-making based on scouting data. 6. There was a great deal of temporal change in the significant spatial patterns observed within a field at each sampling time point during a single season. Predator and pest aggregations observed in these fields were generally not stable for the entire season. 7. Predator aggregation did not correlate consistently with pest aggregation, plant damage or predation rate. Spatial patterns in predator abundance were not associated consistently with any single parameter measured. The most consistent positive association was between foliage-dwelling predators and pests (significant in four of seven grids). Inferring associations between predators and prey based on an intensive one-off sampling grid is difficult, due to the temporal variability in the abundance of each group. 8. Synthesis and applications. This study demonstrated that generalist predator populations are rarely distributed randomly and field edges and adjacent crops can have an influence on within-field predator abundance. This must be considered when estimating arthropod (pest and predator) abundance from a set of samples taken at random locations within a field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring insect viruses are a promising means of intentionally causing disease in insects but they do not compete successfully with synthetic chemicals in the commercial marketplace. Furthermore, their use for pest control is still restricted. One factor preventing the development of baculoviruses as effective biopesticides is concern over the production issue. In vitro instability during propagation of these viruses in suspension cells is the major limitation to the in vitro production ofbaculoviruses in cell cultures. In this study, an isolated baculovirus (HaSNPV) was cultivated using serial passaging in a suspension cell culture. The results show a reduction in the occlusion body production during six passages, due to the passage effect. However the purification of an HaSNPV clone suggested better stability. A simple method used in this work for the serial passaging of this virus is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects have a much smaller repertoire of voltage-gated calcium (Ca-v) channels than vertebrates. Drosophila melanogaster harbors only a single ortholog of each of the vertebrate Ca(v)1, Ca(v)2, and Ca(v)3 subtypes, although its basal inventory is expanded by alternative splicing and editing of Ca-v channel transcripts. Nevertheless, there appears to be little functional plasticity within this limited panel of insect Ca-v channels, since severe loss-of-function mutations in genes encoding the pore-forming a, subunits in Drosophila are embryonic lethal. Since the primary role of spider venom is to paralyze or kill insect prey, it is not surprising that most, if not all, spider venoms contain peptides that potently modify the activity of these functionally critical insect Ca-v channels. Unfortunately, it has proven difficult to determine the precise ion channel subtypes recognized by these peptide toxins since insect Ca-v channels have significantly different pharmacology to their vertebrate counterparts, and cloned insect Ca-v channels are not available for electrophysiological studies. However, biochemical and genetic studies indicate that some of these spider toxins might ultimately become the defining pharmacology for certain subtypes of insect Ca-v channels. This review focuses on peptidic spider toxins that specifically target insect Ca-v channels. In addition to providing novel molecular tools for ion channel characterization, some of these toxins are being used as leads to develop new methods for controlling insect pests. (c) 2006 Elsevier Ltd. All rights reserved.