70 resultados para human growth hormone
Resumo:
No abstract
Resumo:
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are increasingly used in patients with diabetes, and small studies have suggested a beneficial effect on renal function, but their effects on. extracellular matrix (ECM) turnover are unknown. The aims of this study were to investigate the effects of the PPAR-gamma agonist pioglitazone on growth and matrix production in human cortical fibroblasts (CF). Cell growth and ECM production and turnover were measured in human CF in the presence and absence of 1 and 3 muM pioglitazone. Exposure of CF to pioglitazone caused an antiproliferative (P < 0.0001) and hypertrophic (P < 0.0001) effect; reduced type IV collagen secretion (P < 0.01), fibronectin secretion (P < 0.0001), and proline incorporation (P < 0.0001); decreased MMP-9 activity (P < 0.05); and reduced tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 secretion (P < 0.001 and P < 0.0001, respectively). These effects were independent of TGF-beta1. A reduction in ECM production was similarly observed when CF were exposed to a selective PPAR-gamma agonist (L-805645) in concentrations that caused no toxicity, confirming the antifibrotic effects of pioglitazone were mediated through a PPAR-gamma-dependent mechanism. Exposure of CF to high glucose conditions induced an increase in the expression of collagen IV (P < 0.05), which was reversed both in the presence of pioglitazone (1 and 3 muM) and by L-805645. In summary, exposure of human CIF to pioglitazone causes an antiproliferative effect and reduces ECM production through mechanisms that include reducing TIMP activity, independent of TGF-beta1. These studies suggest that the PPAR-gamma agonists may have a specific role in ameliorating the course of progressive tubulointerstitial fibrosis under both normoglycemic and hyperglycemic states.
Resumo:
Because the poor growth performance of intensively housed pigs is associated with increased circulating glucocorticoid concentrations, we investigated the effects of glucocorticoid suppression by inducing a humoral immune response to ACTH on physiological and production variables in growing pigs. Grower pigs (28.6 0.9 kg) were immunized with amino acids 1 through 24 of ACTH conjugated to ovalbumin and suspended in diethylaminoethyl (DEAE) dextran-adjuvant or adjuvant alone (control) on d 1, 28, and 56. The ACTH-specific antibody titers generated suppressed increases in cortisol concentrations on d 63 in response to an acute stressor (P = 0.002; control = 71 +/- 8.2 ng/ mL; ACTH-immune = 43 +/- 4.9 ng/mL) without altering basal concentrations. Plasma beta-endorphin concentrations were also increased (P < 0.001) on d 63 (control = 18 +/- 2.1 ng/mL; ACTH-immune = 63 +/- 7.3 ng/mL), presumably because of a release from negative feedback on the expression of proopiomelanocortin in pituitary corticotropes. Immunization against ACTH did not alter ADG (P = 0.120; control = 1,077 25; ACTH-immune = 1,143 25 g) or ADFI (P = 0.64; control = 2,719 42; ACTH-immune = 2,749 42 g) and did not modify behavior (P = 0.681) assessed by measuring vocalization in response to acute restraint. In summary, suppression of stress-induced cortisol responses through ACTH immunization increased beta-endorphin concentrations, but it did not modify ADG, ADFI, or restraint vocalization score in growing pigs.
Resumo:
We recently established that fibroblast growth factor (FGF)-1 promotes adipogenesis of primary human preadipocytes (phPA). In the current report, we have characterized the adipogenic effects of FGF-1 in phPA and also in a human PA strain derived from an individual with Simpson-Golabi-Behmel syndrome (SGBS PA), which exhibit an intrinsic capacity to differentiate with high efficiency. In further studies, we compared these models with the well-characterized murine 3T3-L1 preadipocyte cell line (3T3-L1 PA). FGF-1 up-regulated the adipogenic program in phPA, with increased expression of peroxisome proliferator-activated receptor-gamma in confluent PA prior to induction of differentiation and increased expression of adipocyte markers during differentiation. Moreover, phPA differentiated in the presence of FGF-1 were more insulin responsive and secreted increased levels of adiponectin. FGF-1 treatment of SGBS PA further enhanced differentiation. For the most part, the adipogenic program in phPA paralleled that observed in 3T3-L1 PA; however, we found no evidence of mitotic clonal expansion in the phPA. Finally, we investigated a role for extracellular regulated kinase 1/2 (ERK 1/2) in adipogenesis of phPA. FGF-1 induced robust phosphorylation of ERK1/2 in early differentiation and inhibition of ERK1/2 activity significantly reduced phPA differentiation. These data suggest that FGF-1 treated phPA represent a valuable in vitro model for the study of adipogenesis and insulin action and indicate that ERK1/2 activation is necessary for human adipogenesis in the absence of mitotic clonal expansion.
Resumo:
The aim of this investigation was to test the hypothesis that testicular germ cell tumors (TGCTs) are hormone-dependent cancers. Human TGCT cells were implanted in the left testis of male severe combined immunodeficient mice receiving either no treatment or hormone manipulation treatment [blockade of gonadotropin-releasing hormone secretion and/or signaling using leuprolide or leuprolide plus exogenous testosterone]. Real-time RT-PCR analysis was used to determine the expression profiles of hormone pathway-associated genes. Tumor burden was significantly smaller in mice receiving both leuprolide and testosterone. Real-time RTPCR analysis of follicle-stimulating hormone (FSH) receptor, luteinizing hormone (LH) receptor and P450 aromatase revealed changes in expression in normal testis tissue related to presence of xenograft tumors and manipulation of hormone levels but a complete absence of expression of these genes in tumor cells themselves. This was confirmed in human specimens of TGCT. Reduced TGCT growth in vivo was associated with significant downregulation of LH receptor and P450 aromatase expression in normal testes. In conclusion, manipulation of hormone levels influenced the growth of TGCT in vivo, while the presence of xenografted tumors influenced the expression of hormone-related genes in otherwise untreated animals. Human TGCTs, both in the animal model and in clinical specimens, appear not to express receptors for FSH or LH. Similarly, expression of the P450 aromatase gene is absent in TGCTs. Impaired estrogen synthesis and/or signaling may be at least partly responsible for inhibition of TGCT growth in the animal model. (c) 2005 Wiley-Liss, Inc.
Resumo:
Fibroblast growth factor-2 (FGF-2) is mitogenic for the human breast cancer cell line MCF-7; here we investigate some of the signaling pathways subserving this activity. FGF-2 stimulation of MCF-7 cells resulted in a global increase of intracellular tyrosine phosphorylation of proteins, particularly FGF receptor substrate-2, the protooncogene product Src and the mitogen-activated protein kinase (MAP kinase) cascade, A major increase in the tyrosine phosphorylation of a 30-kDa protein species was also found. This protein was identified as cyclin D2 by mass spectrometry after trypsin digestion. Immunoprecipitation of cyclin D2 and immunoblotting with anti-phosphotyrosine antibodies confirmed that the tyrosine phosphorylation of cyclin D2 was indeed induced by FGF-2 stimulation. In addition, pharmacological inhibition of Src (with herbimycin A and PP2), and of the MAP kinase cascade (with PD98059), confirmed that Src activity is required for the FGF-2-induced phosphorylation of cyclin D2 whereas MAP kinase activity is not, Thus, tyrosine phosphorylation of cyclin D2 may be a hey regulatory target for FGF-2 signaling. (C) 2000 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.