62 resultados para hierarchical linear model
Resumo:
Steel fiber reinforced concrete (SFRC) is widely applied in the construction industry. Numerical elastoplastic analysis of the macroscopic behavior is complex. This typically involves a piecewise linear failure curve including corner singularities. This paper presents a single smooth biaxial failure curve for SFRC based on a semianalytical approximation. Convexity of the proposed model is guaranteed so that numerical problems are avoided. The model has sufficient flexibility to closely match experimental results. The failure curve is also suitable for modeling plain concrete under biaxial loading. Since this model is capable of simulating the failure states in all stress regimes with a single envelope, the elastoplastic formulation is very concise and simple. The finite element implementation is developed to demonstrate the conciseness and the effectiveness of the model. The computed results display good agreement with published experimental data.
Resumo:
We analyze the sequences of round-off errors of the orbits of a discretized planar rotation, from a probabilistic angle. It was shown [Bosio & Vivaldi, 2000] that for a dense set of parameters, the discretized map can be embedded into an expanding p-adic dynamical system, which serves as a source of deterministic randomness. For each parameter value, these systems can generate infinitely many distinct pseudo-random sequences over a finite alphabet, whose average period is conjectured to grow exponentially with the bit-length of the initial condition (the seed). We study some properties of these symbolic sequences, deriving a central limit theorem for the deviations between round-off and exact orbits, and obtain bounds concerning repetitions of words. We also explore some asymptotic problems computationally, verifying, among other things, that the occurrence of words of a given length is consistent with that of an abstract Bernoulli sequence.