77 resultados para genetic screeing and testing
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
This study used allozyme and mitochondrial DNA variation to examine genetic structure in the Oxleyan Pygmy Perch Nannoperca oxleyana. This small-bodied freshwater fish has a very restricted distribution occurring only in some small coastal streams in south-east Queensland and northern New South Wales. It was expected that subpopulations may contain little genetic variation and be highly differentiated from one another. The results, based on allozyme and mitochondrial DNA control region variation were in agreement with these expectations. Allozyme variation was very low overall, with only one locus showing variation at most sites. The high differentiation was because a different locus tended to be polymorphic at each site. Mitochondrial variation within sites was also low, but some sites had unique haplotypes. The patterns of similarity among mitochondrial DNA haplotypes were not as expected from geographical proximity alone. In particular, although some northern sites had unique haplotypes, four sites spread along 200 km of coastline were remarkably similar, sharing the same common haplotype at similar frequencies. We suggest that these four streams may have had a confluence relatively recently, possibly when sea levels were lower, 8000-10 000 BP.
Resumo:
Giardia duodenalis isolates recovered from humans and clogs living in the same locality in a remote tea-growing community of northeast India were characterized at 3 different loci; the SSU-rDNA, elongation factor 1-alpha (ef1-alpha) and triose phosphate isomerase (tpi) gene. Phylogenetic analysis of the SSU-rDNA and ef1-alpha genes provided poor genetic resolution of the isolates within various assemblages, stressing the importance of using multiple loci when inferring genotypes to Giardia. Analysis of the tpi gene provided better genetic resolution and placed canine Giardia isolates within the genetic groupings of human isolates (Assemblages A and B). Further evidence for zoonotic transmission was supported by epidemiological data showing a highly significant association between the prevalence of Giardia in humans and presence of it Giardia-positive dog in the same household (odds ratio 3.01, 95%) CI, 1.11, 8.39, P = 0.0000).
Resumo:
The risk of breast cancer arises from a combination of genetic susceptibility and environmental factors. Recent studies show that type and duration of use of hormone replacement therapy affect a women's risk of developing breast cancer.1-7 The women's health initiative trial was stopped early because of excess adverse cardiovascular events and invasive breast cancer with oestrogen and progestogen.6 The publicity increased public awareness of the risks of hormone replacement therapy, and this was heightened by the publication of the million women study.2 However, the recently published oestrogen only arm of the women's health initiative trial suggests that this formulation may reduce the risk of breast cancer.8 To help make sense of the often confusing information,9 women and clinicians need individual rather than population risk data. We have produced estimates that can be used to calculate individual risk for women living up to the age of 79 and suggest the risk
Resumo:
Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.
Resumo:
We propose a simulated-annealing-based genetic algorithm for solving model parameter estimation problems. The algorithm incorporates advantages of both genetic algorithms and simulated annealing. Tests on computer-generated synthetic data that closely resemble optical constants of a metal were performed to compare the efficiency of plain genetic algorithms against the simulated-annealing-based genetic algorithms. These tests assess the ability of the algorithms to and the global minimum and the accuracy of values obtained for model parameters. Finally, the algorithm with the best performance is used to fit the model dielectric function to data for platinum and aluminum. (C) 1997 Optical Society of America.
Resumo:
To identify possible associations between host genetic factors and the onset of liver fibrosis following Schistosoma japonicum infection, the major histocompatibility class II alleles of 84 individuals living on an island (Jishan) endemic for schistosomiasis japonica in the Poyang Lake Region of Southern China were determined. Forty patients exhibiting advanced schistosomiasis, characterised by extensive liver fibrosis, and 44 age and sex-matched control subjects were assessed for the class II haplotypes HLA-DRBI and HLA-DQB1. Two HLA-DRB1 alleles, HLA-DRB1*0901 (P = 0.012) and *1302 (P = 0.039), and two HLA-DQB1 alleles, HLA-DQB1*0303 (P = 0.012) and *0609 (P = 0.037), were found to be significantly associated with susceptibility to fibrosis. These associated DRB1 and DQB1 alleles are in very strong linkage disequilibrium, with DRB1*0901-DQB1*0303 and DRB1*1302-DQB1*0609 found as: common haplotypes in this population. In contrast, the alleles HLA-DRB1*1501 (P = 0.025) and HLA-DQB 1*0601 (P = 0.022) were found to be associated with resistance to hepatosplenic disease. Moreover, the alleles DQB1*0303 and DRB1*0901 did not increase susceptibility in the presence of DQB1*0601, indicating that DQB1*0601 is dominant over DQB1*0303 and DRB1*0901. The study has thus identified both positive and negative associations between HLA class II alleles and the risk of individuals developing moderate to severe liver fibrosis following schistosome infection. (C) 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
For the improvement of genetic material suitable for on farm use under low-input conditions, participatory and formal plant breeding strategies are frequently presented as competing options. A common frame of reference to phrase mechanisms and purposes related to breeding strategies will facilitate clearer descriptions of similarities and differences between participatory plant breeding and formal plant breeding. In this paper an attempt is made to develop such a common framework by means of a statistically inspired language that acknowledges the importance of both on farm trials and research centre trials as sources of information for on farm genetic improvement. Key concepts are the genetic correlation between environments, and the heterogeneity of phenotypic and genetic variance over environments. Classic selection response theory is taken as the starting point for the comparison of selection trials (on farm and research centre) with respect to the expected genetic improvement in a target environment (low-input farms). The variance-covariance parameters that form the input for selection response comparisons traditionally come from a mixed model fit to multi-environment trial data. In this paper we propose a recently developed class of mixed models, namely multiplicative mixed models, also called factor-analytic models, for modelling genetic variances and covariances (correlations). Mixed multiplicative models allow genetic variances and covariances to be dependent on quantitative descriptors of the environment, and confer a high flexibility in the choice of variance-covariance structure, without requiring the estimation of a prohibitively high number of parameters. As a result detailed considerations regarding selection response comparisons are facilitated. ne statistical machinery involved is illustrated on an example data set consisting of barley trials from the International Center for Agricultural Research in the Dry Areas (ICARDA). Analysis of the example data showed that participatory plant breeding and formal plant breeding are better interpreted as providing complementary rather than competing information.
Resumo:
The taxonomic relationship between two toothed South African river crabs, Potamonautes warreni and P. unispinus, is unclear. The problem stems from the widespread variation in carapace dentition patterns amongst P. warreni individuals over its biogeographic range, where single toothed individuals may appear similar in carapace morphology to P. unispinus. Ten populations of P. warreni and 18 populations of P. unispinus were collected and the morphometric and genetic differentiation between the two taxa quantified. Patterns of morphometric and genetic variation were examined using multivariate statistics and protein gel electrophoresis, respectively. Principal component analyses of carapace characters showed that the two species are morphologically indistinguishable. However, discriminate functions analyses and additional statistical results corroborate the morphological distinction between the two taxa. Allozyme electrophoresis of 17 protein coding loci, indicated a close genetic similarity between the two species (I = 0.92). A fixed allelic difference at one locus (LT-2) and extensive genetic variability at another locus (PGM-1) indicate that two gene pools are present and that the two taxa are genetically isolated. Intraspecific genetic I values for both species were > 0.97 and indicated no apparent genetic structuring on a micro or macro-geographic scale. The variation in carapace dentition among P. warreni populations possesses no genetic basis and may possibly toe the product of ecogenesis. The value of dentition patterns in the systematics of river crabs is discussed. Dentition patterns among river crab species appear to be conserved and reliable as species specific diagnostic markers, but should ideally be used in combination with other morphological data sets and genetic evidence.
Resumo:
The study of viral-based processes is hampered by (a) their complex, transient nature, (b) the instability of products, and (c) the lack of accurate diagnostic assays. Here, we describe the use of real-time quantitative polymerase chain reaction to characterize baculoviral infection. Baculovirus DNA content doubles every 1.7 h from 6 h post-infection until replication is halted at the onset of budding. No dynamic equilibrium exists between replication and release, and the kinetics are independent of the cell density at the time of infection. No more than 16% of the intracellular virus copies bud from the cell. (C) 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 476-480, 2002; DOI 10.1002/bit.10126.
Resumo:
Conditions have been developed for genetic transformation and insertional mutagenesis in Leifsonia xyli subsp. xyli (Lxx), the causal organism of ratoon stunting disease (RSD), one of the most damaging and intractable diseases of sugarcane internationally. Transformation frequencies ranged from 1 to 10 colony forming units (CFU)/mug of plasmid DNA using Clavibacter/Escherichia coli shuttle vectors pCG188, pDM302, and pDM306 and ranged from 50 to 500 CFU/mug using cosmid cloning vectors pLAFR3 and pLAFR5-km. The transformation/transposition frequency was 0 to 70 CFU/mug of DNA, using suicide vectors pUCD623 and pSLTP2021 containing transposable elements Tn4431 and Tn5, respectively. It was necessary to grow Lxx in media containing 0.1% glycine for electroporation and to amplify large plasmids in a dam(-)/dcm(-) E. coli strain and purify the DNA by anion exchange. To keep selection pressure at an optimum, the transformants were grown on nitrocellulose filters (0.2-mum pore size) on media containing the appropriate antibiotics. Transposon Tn4431 containing a promoterless lux operon from Vibrio fischeri and a tetracycline-resistance gene was introduced on the suicide vector pUCD623. All but 1% of the putative transposon mutants produce light, indicating transposition into functional Lxx genes. Southern blot analysis of these transformants indicates predominantly single transposon insertions at unique sites. The cosmid cloning vector pLAFR5-km was stably maintained in Lxx. The development of a transformation and transposon mutagenesis system opens the way for molecular analysis of pathogenicity determinants in Lxx.
Resumo:
Under certain conditions, cross-sectional analysis of cross-twin intertrait correlations can provide important information about the direction of causation (DOC) between two variables. A community-based sample of Australian female twins aged 18 to 45 years was mailed an extensive Health and Lifestyle Questionnaire (HLQ) that covered a wide range of personality and behavioral measures. Included were self-report measures of recent psychological distress and perceived childhood environment (PBI). Factor analysis of the PBI yielded three interpretable dimensions: Coldness, Overprotection, and Autonomy. Univariate analysis revealed that parental Overprotection and Autonomy were best explained by additive genetic, shared, and nonshared environmental effects (ACE), whereas the best-fitting model for PBI Coldness and the three measures of psychological distress (Depression, Phobic Anxiety, and Somatic Distress) included only additive genetic and nonshared environmental effects (AE). A common pathway model best explained the covariation between (1) the three PBI dimensions and (2) the three measures of psychological distress. DOC modeling between latent constructs of parenting and psychological distress revealed that a model which specified recollected parental behavior as the cause of psychological distress provided a better fit than a model which specified psychological distress as the cause of recollected parental behavior. Power analyses and limitations of the findings are discussed.