72 resultados para estimation of distribution algorithms
Resumo:
This paper presents some initial attempts to mathematically model the dynamics of a continuous estimation of distribution algorithm (EDA) based on a Gaussian distribution and truncation selection. Case studies are conducted on both unimodal and multimodal problems to highlight the effectiveness of the proposed technique and explore some important properties of the EDA. With some general assumptions, we show that, for ID unimodal problems and with the (mu, lambda) scheme: (1). The behaviour of the EDA is dependent only on the general shape of the test function, rather than its specific form; (2). When initialized far from the global optimum, the EDA has a tendency to converge prematurely; (3). Given a certain selection pressure, there is a unique value for the proposed amplification parameter that could help the EDA achieve desirable performance; for ID multimodal problems: (1). The EDA could get stuck with the (mu, lambda) scheme; (2). The EDA will never get stuck with the (mu, lambda) scheme.
Resumo:
Foreign exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process is very helpful. In this paper, we try to create such a system with a genetic algorithm engine to emulate trader behaviour on the foreign exchange market and to find the most profitable trading strategy.
Resumo:
A two-component survival mixture model is proposed to analyse a set of ischaemic stroke-specific mortality data. The survival experience of stroke patients after index stroke may be described by a subpopulation of patients in the acute condition and another subpopulation of patients in the chronic phase. To adjust for the inherent correlation of observations due to random hospital effects, a mixture model of two survival functions with random effects is formulated. Assuming a Weibull hazard in both components, an EM algorithm is developed for the estimation of fixed effect parameters and variance components. A simulation study is conducted to assess the performance of the two-component survival mixture model estimators. Simulation results confirm the applicability of the proposed model in a small sample setting. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Objectives: To compare the population modelling programs NONMEM and P-PHARM during investigation of the pharmacokinetics of tacrolimus in paediatric liver-transplant recipients. Methods: Population pharmacokinetic analysis was performed using NONMEM and P-PHARM on retrospective data from 35 paediatric liver-transplant patients receiving tacrolimus therapy. The same data were presented to both programs. Maximum likelihood estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F). Covariates screened for influence on these parameters were weight, age, gender, post-operative day, days of tacrolimus therapy, transplant type, biliary reconstructive procedure, liver function tests, creatinine clearance, haematocrit, corticosteroid dose, and potential interacting drugs. Results: A satisfactory model was developed in both programs with a single categorical covariate - transplant type - providing stable parameter estimates and small, normally distributed (weighted) residuals. In NONMEM, the continuous covariates - age and liver function tests - improved modelling further. Mean parameter estimates were CL/F (whole liver) = 16.3 1/h, CL/F (cut-down liver) = 8.5 1/h and V/F = 565 1 in NONMEM, and CL/F = 8.3 1/h and V/F = 155 1 in P-PHARM. Individual Bayesian parameter estimates were CL/F (whole liver) = 17.9 +/- 8.8 1/h, CL/F (cutdown liver) = 11.6 +/- 18.8 1/h and V/F = 712 792 1 in NONMEM, and CL/F (whole liver) = 12.8 +/- 3.5 1/h, CL/F (cut-down liver) = 8.2 +/- 3.4 1/h and V/F = 221 1641 in P-PHARM. Marked interindividual kinetic variability (38-108%) and residual random error (approximately 3 ng/ml) were observed. P-PHARM was more user friendly and readily provided informative graphical presentation of results. NONMEM allowed a wider choice of errors for statistical modelling and coped better with complex covariate data sets. Conclusion: Results from parametric modelling programs can vary due to different algorithms employed to estimate parameters, alternative methods of covariate analysis and variations and limitations in the software itself.